1
|
Tang M, Wu X, Zhang W, Cui H, Zhang L, Yan P, Yang C, Wang Y, Chen L, Xiao C, Liu Y, Zou Y, Yang C, Zhang L, Yao Y, Liu Z, Li J, Jiang X, Zhang B. Epidemiological and Genetic Analyses of Schizophrenia and Breast Cancer. Schizophr Bull 2024; 50:317-326. [PMID: 37467357 PMCID: PMC10919785 DOI: 10.1093/schbul/sbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS While the phenotypic association between schizophrenia and breast cancer has been observed, the underlying intrinsic link is not adequately understood. We aim to conduct a comprehensive interrogation on both phenotypic and genetic relationships between schizophrenia and breast cancer. STUDY DESIGN We first used data from UK Biobank to evaluate a phenotypic association and performed an updated meta-analysis incorporating existing cohort studies. We then leveraged genomic data to explore the shared genetic architecture through a genome-wide cross-trait design. STUDY RESULTS Incorporating results of our observational analysis, meta-analysis of cohort studies suggested a significantly increased incidence of breast cancer among women with schizophrenia (RR = 1.30, 95% CIs = 1.14-1.48). A positive genomic correlation between schizophrenia and overall breast cancer was observed (rg = 0.12, P = 1.80 × 10-10), consistent across ER+ (rg = 0.10, P = 5.74 × 10-7) and ER- subtypes (rg = 0.09, P = .003). This was further corroborated by four local signals. Cross-trait meta-analysis identified 23 pleiotropic loci between schizophrenia and breast cancer, including five novel loci. Gene-based analysis revealed 27 shared genes. Mendelian randomization demonstrated a significantly increased risk of overall breast cancer (OR = 1.07, P = 4.81 × 10-10) for genetically predisposed schizophrenia, which remained robust in subgroup analysis (ER+: OR = 1.10, P = 7.26 × 10-12; ER-: OR = 1.08, P = 3.50 × 10-6). No mediation effect and reverse causality was found. CONCLUSIONS Our study demonstrates an intrinsic link underlying schizophrenia and breast cancer, which may inform tailored screening and management of breast cancer in schizophrenia.
Collapse
Affiliation(s)
- Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Yang F, Wu Y, Hockey R, Doust J, Mishra GD, Montgomery GW, Mortlock S. Evidence of shared genetic factors in the etiology of gastrointestinal disorders and endometriosis and clinical implications for disease management. Cell Rep Med 2023; 4:101250. [PMID: 37909040 PMCID: PMC10694629 DOI: 10.1016/j.xcrm.2023.101250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/26/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
In clinical practice, the co-existence of endometriosis and gastrointestinal symptoms is often observed. Using large-scale datasets, we report a genetic correlation between endometriosis and irritable bowel syndrome (IBS), peptic ulcer disease (PUD), gastro-esophageal reflux disease (GORD), and a combined GORD/PUD medicated (GPM) phenotype. Mendelian randomization analyses support a causal relationship between genetic predisposition to endometriosis and IBS and GPM. Identification of shared risk loci highlights biological pathways that may contribute to the pathogenesis of both diseases, including estrogen regulation and inflammation, and potential therapeutic drug targets (CCKBR; PDE4B). Higher use of IBS, GORD, and PUD medications in women with endometriosis and higher use of hormone therapies in women with IBS, GORD, and PUD, support the co-occurrence of these conditions and highlight the potential for drug repositioning and drug contraindications. Our results provide evidence of shared disease etiology and have important clinical implications for diagnostic and treatment decisions for both diseases.
Collapse
Affiliation(s)
- Fei Yang
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yeda Wu
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Hockey
- The University of Queensland, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CREWaND), School of Public Health, Herston Road, Herston, QLD, Australia
| | - Jenny Doust
- The University of Queensland, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CREWaND), School of Public Health, Herston Road, Herston, QLD, Australia
| | - Gita D Mishra
- The University of Queensland, NHMRC Centre for Research Excellence on Women and Non-communicable Diseases (CREWaND), School of Public Health, Herston Road, Herston, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sally Mortlock
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Yavuz BR, Arici MK, Demirel HC, Tsai CJ, Jang H, Nussinov R, Tuncbag N. Neurodevelopmental disorders and cancer networks share pathways, but differ in mechanisms, signaling strength, and outcome. NPJ Genom Med 2023; 8:37. [PMID: 37925498 PMCID: PMC10625621 DOI: 10.1038/s41525-023-00377-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
Collapse
Affiliation(s)
- Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey.
- School of Medicine, Koc University, Istanbul, 34450, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
4
|
Kim S, Nam S. The causal relationship of colorectal cancer on schizophrenia: A Mendelian randomization study. Medicine (Baltimore) 2023; 102:e35517. [PMID: 37800808 PMCID: PMC10553116 DOI: 10.1097/md.0000000000035517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Comorbidities associated with psychiatric disorders often occur in patients with cancer. A causal effect of schizophrenia on cancer was observed using Mendelian randomization (MR) analysis. However, the causal effect of colorectal cancer on schizophrenia has not been studied using MR analysis. Therefore, we performed MR analysis to investigate the causal effects of colorectal cancer on schizophrenia. We performed "two-sample summary-data Mendelian randomization" using publicly available genome-wide association studies data to investigate the causal relationship between colorectal cancer (as exposure) and schizophrenia (as outcome). The inverse variance weighted method was used to calculate causal estimates. In 2 TSMR analyses, we reported that the odds ratios for schizophrenia per log odds increase in colorectal cancer risk were 6.48 (95% confidential interval [CI] of OR 1.75-24.03; P = .005) and 9.62 × 106 (95% CI of OR 1.13-8.22 × 1013; P = .048). Pleiotropic tests and sensitivity analysis demonstrated minimal horizontal pleiotropy and robustness of the causal relationship. We provide evidence for a causal relationship between the incidence of colorectal cancer and the development of schizophrenia through TSMR analysis.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, Korea
| |
Collapse
|
5
|
Al-Soufi L, Costas J. Genetic susceptibility for schizophrenia after adjustment by genetic susceptibility for smoking: implications in identification of risk genes and genetic correlation with related traits. Psychol Med 2023; 53:6806-6816. [PMID: 36876478 DOI: 10.1017/s0033291723000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Prevalence of smoking in schizophrenia (SCZ) is larger than in general population. Genetic studies provided some evidence of a causal effect of smoking on SCZ. We aim to characterize the genetic susceptibility to SCZ affected by genetic susceptibility to smoking. METHODS Multi-trait-based conditional and joint analysis was applied to the largest European SCZ genome-wide association studies (GWAS) to remove genetic effects on SCZ driven by smoking, estimated by generalized summary data-based Mendelian randomization. Enrichment analysis was performed to compare original v. conditional GWAS. Change in genetic correlation between SCZ and relevant traits after conditioning was assessed. Colocalization analysis was performed to identify specific loci confirming general findings. RESULTS Conditional analysis identified 19 new risk loci for SCZ and 42 lost loci whose association with SCZ may be partially driven by smoking. These results were strengthened by colocalization analysis. Enrichment analysis indicated a higher association of differentially expressed genes at prenatal brain stages after conditioning. Genetic correlation of SCZ with substance use and dependence, attention deficit-hyperactivity disorder, and several externalizing traits significantly changed after conditioning. Colocalization of association signal between SCZ and these traits was identified for some of the lost loci, such as CHRNA2, CUL3, and PCDH7. CONCLUSIONS Our approach led to identification of potential new SCZ loci, loci partially associated to SCZ through smoking, and a shared genetic susceptibility between SCZ and smoking behavior related to externalizing phenotypes. Application of this approach to other psychiatric disorders and substances may lead to a better understanding of the role of substances on mental health.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Spain
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| |
Collapse
|
6
|
Cui Y, Lu W, Shao T, Zhuo Z, Wang Y, Zhang W. Severe mental illness and the risk of breast cancer: A two-sample, two-step multivariable Mendelian randomization study. PLoS One 2023; 18:e0291006. [PMID: 37656762 PMCID: PMC10473543 DOI: 10.1371/journal.pone.0291006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Based on epidemiological reports, severe mental illness (SMI) and breast cancer (BC) risk are linked positively. However, it is susceptible to clinical confounding factors, such as smoking, alcohol consumption, etc. Here, we performed a two-sample, two-step multivariable Mendelian randomization (MR) research to explore how the SMI etiologically influences BC risk and to quantify mediating effects of known modifiable risk factors. METHODS Data concerning the single nucleotide polymorphism (SNP)-associated with schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), and BC were obtained from two large consortia: the Breast Cancer Association Consortium (BCAC) and the Psychiatric Genomics Consortium (PGC). Then, the correlations of the previous SMI with the BC prevalence and the potential impact of mediators were explored through the two-sample and two-step MR analyses. RESULTS In two-sample MR, schizophrenia increased BC incidence (odds ratio (OR) 1.06, 95% confidence interval (CI) 1.02-1.10, P = 0.001). In subgroup analysis, schizophrenia increased ER+ BC (OR 1.06, 95% CI 1.03-1.10, P = 0.0009) and ER-BC (OR 1.06, 95% CI 1.01-1.11, P = 0.0123) incidences. Neither MDD nor BD elevated the BC risk. In two-step MR, smoking explained 11.29% of the schizophrenia-all BC risk association. CONCLUSIONS Our study indicates that schizophrenia increases susceptibility to breast cancer, with smoking playing a certain mediating role. Therefore, BC screening and smoking should be incorporated into the health management of individuals with schizophrenia.
Collapse
Affiliation(s)
- Yongjia Cui
- Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenping Lu
- Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Tianrui Shao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhili Zhuo
- Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Ya’nan Wang
- Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Weixuan Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
7
|
Dai J, Zhang MZ, He QQ, Chen R. The emerging role of exosomes in Schizophrenia. Psychiatry Res 2023; 327:115394. [PMID: 37536144 DOI: 10.1016/j.psychres.2023.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Schizophrenia (SCZ), a serious mental disorder, is one of the leading causes of disease burden worldwide. Exosomes, as a natural nanocarrier, are able to cross the blood-brain barrier (BBB) and play a key bridging role in central nervous system (CNS) communication, participating in important physiological processes such as neural regeneration, prominent plasticity, axonal support, and neuroinflammation. In recent years, exosomes have received widespread attention in the field of neurodegenerative diseases and mental disorders, especially Alzheimer's disease. However, there are few reviews on exosomes and SCZ. Therefore, we conducted a literature search in PubMed and Web of Science using the following search terms: "schizophrenia", "mental disorder", "central system", "exosome", "extracellular vesicles" to identify publications from January 2010 to December 2022. Our review summarized exosomes secreted by different cell types in the CNS and the double-edged role of exosomes in the development of SCZ, and discussed their future potential as biomarkers and therapeutic targets. In conclusion, this article provides an up-to-date overview of the current research on the involvement of exosomes in SCZ, while also highlighting the challenges that are currently faced in this field.
Collapse
Affiliation(s)
- Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Min-Zhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Qi-Qiang He
- School of Public Health, Wuhan University, Wuhan, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China
| | - Rui Chen
- School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Ren F, Shang Q, Zhao S, Yang C, Feng K, Liu J, Kang X, Zhang R, Wang X, Wang X. An exploration of the correlations between seven psychiatric disorders and the risks of breast cancer, breast benign tumors and breast inflammatory diseases: Mendelian randomization analyses. Front Psychiatry 2023; 14:1179562. [PMID: 37448488 PMCID: PMC10338175 DOI: 10.3389/fpsyt.2023.1179562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Background Previous observational studies have showed that certain psychiatric disorders may be linked to breast cancer risk, there is, however, little understanding of relationships between mental disorders and a variety of breast diseases. This study aims to investigate if mental disorders influence the risks of overall breast cancer, the two subtypes of breast cancer (ER+ and ER-), breast benign tumors and breast inflammatory diseases. Methods During our research, genome-wide association study (GWAS) data for seven psychiatric disorders (schizophrenia, major depressive disorder, bipolar disorder, post-traumatic stress disorder, panic disorder, obsessive-compulsive disorder and anorexia nervosa) from the Psychiatric Genomics Consortium (PGC) and the UK Biobank were selected, and single-nucleotide polymorphisms (SNPs) significantly linked to these mental disorders were identified as instrumental variables. GWAS data for breast diseases came from the Breast Cancer Association Consortium (BCAC) as well as the FinnGen consortium. We performed two-sample Mendelian randomization (MR) analyses and multivariable MR analyses to assess these SNPs' effects on various breast diseases. Both heterogeneity and pleiotropy were evaluated by sensitivity analyses. Results When the GWAS data of psychiatric disorders were derived from the PGC, our research found that schizophrenia significantly increased the risks of overall breast cancer (two-sample MR: OR 1.05, 95%CI [1.03-1.07], p = 3.84 × 10-6; multivariable MR: OR 1.06, 95%CI [1.04-1.09], p = 2.34 × 10-6), ER+ (OR 1.05, 95%CI [1.02-1.07], p = 5.94 × 10-5) and ER- (two-sample MR: OR 1.04, 95%CI [1.01-1.07], p = 0.006; multivariable MR: OR 1.06, 95%CI [1.02-1.10], p = 0.001) breast cancer. Nevertheless, major depressive disorder only showed significant positive association with overall breast cancer (OR 1.12, 95%CI [1.04-1.20], p = 0.003) according to the two-sample MR analysis, but not in the multivariable MR analysis. In regards to the remainder of the mental illnesses and breast diseases, there were no significant correlations. While as for the data from the UK Biobank, schizophrenia did not significantly increase the risk of breast cancer. Conclusions The correlation between schizophrenia and breast cancer found in this study may be false positive results caused by underlying horizontal pleiotropy, rather than a true cause-and-effect relationship. More prospective studies are still needed to be carried out to determine the definitive links between mental illnesses and breast diseases.
Collapse
Affiliation(s)
- Fei Ren
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangtao Zhao
- Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiyu Kang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Saccaro LF, Gasparini S, Rutigliano G. Applications of Mendelian randomization in psychiatry: a comprehensive systematic review. Psychiatr Genet 2022; 32:199-213. [PMID: 36354137 PMCID: PMC9648985 DOI: 10.1097/ypg.0000000000000327] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Psychiatric diseases exact a heavy socioeconomic toll, and it is particularly difficult to identify their risk factors and causative mechanisms due to their multifactorial nature, the limited physiopathological insight, the many confounding factors, and the potential reverse causality between the risk factors and psychiatric diseases. These characteristics make Mendelian randomization (MR) a precious tool for studying these disorders. MR is an analytical method that employs genetic variants linked to a certain risk factor, to assess if an observational association between that risk factor and a health outcome is compatible with a causal relationship. We report the first systematic review of all existing applications and findings of MR in psychiatric disorders, aiming at facilitating the identification of risk factors that may be common to different psychiatric diseases, and paving the way to transdiagnostic MR studies in psychiatry, which are currently lacking. We searched Web of Knowledge, Scopus, and Pubmed databases (until 3 May 2022) for articles on MR in psychiatry. The protocol was preregistered in PROSPERO (CRD42021285647). We included methodological details and results from 50 articles, mainly on schizophrenia, major depression, autism spectrum disorders, and bipolar disorder. While this review shows how MR can offer unique opportunities for unraveling causal links in risk factors and etiological elements of specific psychiatric diseases and transdiagnostically, some methodological flaws in the existing literature limit reliability of results and probably underlie their heterogeneity. We highlight perspectives and recommendations for future works on MR in psychiatry.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Simone Gasparini
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Zhang C, Li X, Zhao L, Liang R, Deng W, Guo W, Wang Q, Hu X, Du X, Sham PC, Luo X, Li T. Comprehensive and integrative analyses identify TYW5 as a schizophrenia risk gene. BMC Med 2022; 20:169. [PMID: 35527273 PMCID: PMC9082878 DOI: 10.1186/s12916-022-02363-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the causal genes at the risk loci and elucidating their roles in schizophrenia (SCZ) pathogenesis remain significant challenges. To explore risk variants associated with gene expression in the human brain and to identify genes whose expression change may contribute to the susceptibility of SCZ, here we report a comprehensive integrative study on SCZ. METHODS We systematically integrated the genetic associations from a large-scale SCZ GWAS (N = 56,418) and brain expression quantitative trait loci (eQTL) data (N = 175) using a Bayesian statistical framework (Sherlock) and Summary data-based Mendelian Randomization (SMR). We also measured brain structure of 86 first-episode antipsychotic-naive schizophrenia patients and 152 healthy controls with the structural MRI. RESULTS Both Sherlock (P = 3. 38 × 10-6) and SMR (P = 1. 90 × 10-8) analyses showed that TYW5 mRNA expression was significantly associated with risk of SCZ. Brain-based studies also identified a significant association between TYW5 protein abundance and SCZ. The single-nucleotide polymorphism rs203772 showed significant association with SCZ and the risk allele is associated with higher transcriptional level of TYW5 in the prefrontal cortex. We further found that TYW5 was significantly upregulated in the brain tissues of SCZ cases compared with controls. In addition, TYW5 expression was also significantly higher in neurons induced from pluripotent stem cells of schizophrenia cases compared with controls. Finally, combining analysis of genotyping and MRI data showed that rs203772 was significantly associated with gray matter volume of the right middle frontal gyrus and left precuneus. CONCLUSIONS We confirmed that TYW5 is a risk gene for SCZ. Our results provide useful information toward a better understanding of the genetic mechanism of TYW5 in risk of SCZ.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rong Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Xiongjian Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, People's Republic of China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
12
|
Gynecological Health Concerns in Women with Schizophrenia and Related Disorders: A Narrative Review of Recent Studies. WOMEN 2022. [DOI: 10.3390/women2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sex and age are important factors influencing physical and mental health in schizophrenia. Our goal was to review the recent literature for associations between gynecological conditions and psychotic illness and to propose integrated strategies for their management in order to improve overall health outcomes in women. We addressed the following questions: What are the prevalence and risk factors of gynecological disorders in women with schizophrenia or delusional disorder (DD)? What are the rates of uptake of gynecological cancer screening and mortality in this population? What role does menopause play? We found an increased incidence of breast cancer in women with schizophrenia. Other gynecological comorbidities were less frequent, but the field has been understudied. Low rates of breast and cervical cancer screening characterize women with schizophrenia. Menopause, because of endocrine changes, aging effects, and resultant comorbidity is associated with high rates of aggressive breast cancer in this population. Uterine and ovarian cancers have been less investigated. Psychosocial determinants of health play an important role in cancer survival. The findings lead to the recommendation that primary care, psychiatry, gynecology, oncology, and endocrinology collaborate in early case finding, in research into etiological links, and in improvement of prevention and treatment.
Collapse
|
13
|
Identifying causality, genetic correlation, priority and pathways of large-scale complex exposures of breast and ovarian cancers. Br J Cancer 2021; 125:1570-1581. [PMID: 34671129 PMCID: PMC8608803 DOI: 10.1038/s41416-021-01576-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genetic correlations, causalities and pathways between large-scale complex exposures and ovarian and breast cancers need systematic exploration. METHODS Mendelian randomisation (MR) and genetic correlation (GC) were used to identify causal biomarkers from 95 cancer-related exposures for risk of breast cancer [BC: oestrogen receptor-positive (ER + BC) and oestrogen receptor-negative (ER - BC) subtypes] and ovarian cancer [OC: high-grade serous (HGSOC), low-grade serous, invasive mucinous (IMOC), endometrioid (EOC) and clear cell (CCOC) subtypes]. RESULTS Of 31 identified robust risk factors, 16 were new causal biomarkers for BC and OC. Body mass index (BMI), body fat mass (BFM), comparative body size at age 10 (CBS-10), waist circumference (WC) and education attainment were shared risk factors for overall BC and OC. Childhood obesity, BMI, CBS-10, WC, schizophrenia and age at menopause were significantly associated with ER + BC and ER - BC. Omega-6:omega-3 fatty acids, body fat-free mass and basal metabolic rate were positively associated with CCOC and EOC; BFM, linoleic acid, omega-6 fatty acids, CBS-10 and birth weight were significantly associated with IMOC; and body fat percentage, BFM and adiponectin were significantly associated with HGSOC. Both GC and MR identified 13 shared factors. Factors were stratified into five priority levels, and visual causal networks were constructed for future interventions. CONCLUSIONS With analysis of large-scale exposures for breast and ovarian cancers, causalities, genetic correlations, shared or specific factors, risk factor priority and causal pathways and networks were identified.
Collapse
|
14
|
Borovcanin MM, Vesic K. Breast cancer in schizophrenia could be interleukin-33-mediated. World J Psychiatry 2021; 11:1065-1074. [PMID: 34888174 PMCID: PMC8613763 DOI: 10.5498/wjp.v11.i11.1065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological and genetic studies have revealed an interconnection between schizophrenia and breast cancer. The mutual underlying pathophysiological mechanisms may be immunologically driven. A new cluster of molecules called alarmins may be involved in sterile brain inflammation, and we have already reported the potential impact of interleukin-33 (IL-33) on positive symptoms onset and the role of its soluble trans-membranes full length receptor (sST2) on amelioration of negative symptoms in schizophrenia genesis. Furthermore, these molecules have already been shown to be involved in breast cancer etiopathogenesis. In this review article, we aim to describe the IL-33/suppressor of tumorigenicity 2 (ST2) axis as a crossroad in schizophrenia-breast cancer comorbidity. Considering that raloxifene could be tissue-specific and improve cognition and that tamoxifen resistance in breast carcinoma could be improved by strategies targeting IL-33, these selective estrogen receptor modulators could be useful in complementary treatment. These observations could guide further somatic, as well as psychiatric therapeutical protocols by incorporating what is known about immunity in schizophrenia.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| |
Collapse
|
15
|
Current Status and Problems of Breast Cancer Treatment with Schizophrenia. Clin Breast Cancer 2021; 22:e399-e406. [PMID: 34862143 DOI: 10.1016/j.clbc.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Schizophrenia is a devastating mental disease that affects approximately 1% of the world's population. Breast cancer is the second most common type of cancer in the world that causes death in women. It is often unclear whether patients with schizophrenia receive recommended cancer treatment that met the guideline. This study characterized breast cancer treatment disruptions in schizophrenia patients and sought to identify and resolve correctable predictors of those disruptions. MATERIALS AND METHODS A retrospective cohort study was conducted on 55 primary breast cancer patients diagnosed with schizophrenia and treated for breast cancer. We evaluated the characteristics of the breast cancer patients with schizophrenia compared to those of 610 breast cancer patients without schizophrenia. RESULTS Compared to the control group, the schizophrenia group had significantly advanced T and N factors and disease stage. Significantly fewer patients in the schizophrenia group than in the control group received chemotherapy (P < .0001) or recommended cancer treatment (P = .0004). Within the schizophrenia group, the patients in need of ADL support were significantly less likely to receive recommended cancer treatment. CONCLUSION Patients with schizophrenia are often diagnosed with breast cancer in advanced stages. In addition, patients with schizophrenia with reduced ADL are less likely to receive chemotherapy or recommended cancer treatment. It is highly recommended that patients with schizophrenia undergo breast cancer screening so that they can be diagnosed early and treated adequately.
Collapse
|
16
|
Taipale H, Solmi M, Lähteenvuo M, Tanskanen A, Correll CU, Tiihonen J. Antipsychotic use and risk of breast cancer in women with schizophrenia: a nationwide nested case-control study in Finland. Lancet Psychiatry 2021; 8:883-891. [PMID: 34474013 DOI: 10.1016/s2215-0366(21)00241-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Breast cancer is more common in female patients with schizophrenia than in the general population. It is not known whether treatment with prolactin-increasing antipsychotics contributes to increased odds of breast cancer. METHODS We used Finnish nationwide registers of hospital treatment, prescription drug purchases, and cancer diagnoses to do a nested case-control study. Of women with schizophrenia, those with breast cancer (cases) were matched by age and duration of illness with five women without cancer (controls). Cases and controls were aged 18-85 years and exclusion criteria were any previous cancer diagnoses, receipt of organ transplant, mastectomy, or diagnosis of HIV. The main analysis was the association between cumulative exposure to prolactin-increasing drugs and breast cancer. The analyses were done with conditional logistic regression, by adjusting for comorbid conditions and concomitant medications. Ethnicity data were not available. FINDINGS Of 30 785 women diagnosed with schizophrenia between 1972 and 2014, 1069 were diagnosed with breast cancer between Jan 1, 2000, and Dec 31, 2017. Compared with 5339 matched controls, 1-4 years cumulative exposure (adjusted odds ratio [OR] 0·95, 95% CI 0·73-1·25) or 5 or more years exposure (adjusted OR 1·19, 0·90-1·58) to prolactin-sparing antipsychotics (including clozapine, quetiapine, or aripiprazole) was not associated with an increased risk of breast cancer in comparison with minimal exposure (<1 year). When compared with less than 1 year of exposure to prolactin-increasing antipsychotics (all other antipsychotics), 1-4 years of exposure was not associated with an increased risk, but exposure for 5 or more years was associated with an increased risk (adjusted OR 1·56 [1·27-1·92], p<0·001). The risk for developing lobular adenocarcinoma associated with long-term use of prolactin-increasing antipsychotics (adjusted OR 2·36 [95% CI 1·46-3·82]) was higher than that of developing ductal adenocarcinoma (adjusted OR 1·42 [95% CI 1·12-1·80]). INTERPRETATION Long-term exposure to prolactin-increasing, but not to prolactin-sparing, antipsychotics is significantly associated with increased odds of breast cancer. Monitoring prolactinemia and addressing hyperprolactinemia is paramount in women with schizophrenia being treated with prolactin-increasing antipsychotics. FUNDING Finnish Ministry of Social Affairs and Health.
Collapse
Affiliation(s)
- Heidi Taipale
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden.
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada; Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Antti Tanskanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, New York City, NY, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden; Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Treur JL, Munafò MR, Logtenberg E, Wiers RW, Verweij KJH. Using Mendelian randomization analysis to better understand the relationship between mental health and substance use: a systematic review. Psychol Med 2021; 51:1593-1624. [PMID: 34030749 PMCID: PMC8327626 DOI: 10.1017/s003329172100180x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Poor mental health has consistently been associated with substance use (smoking, alcohol drinking, cannabis use, and consumption of caffeinated drinks). To properly inform public health policy it is crucial to understand the mechanisms underlying these associations, and most importantly, whether or not they are causal. METHODS In this pre-registered systematic review, we assessed the evidence for causal relationships between mental health and substance use from Mendelian randomization (MR) studies, following PRISMA. We rated the quality of included studies using a scoring system that incorporates important indices of quality, such as the quality of phenotype measurement, instrument strength, and use of sensitivity methods. RESULTS Sixty-three studies were included for qualitative synthesis. The final quality rating was '-' for 16 studies, '- +' for 37 studies, and '+'for 10 studies. There was robust evidence that higher educational attainment decreases smoking and that there is a bi-directional, increasing relationship between smoking and (symptoms of) mental disorders. Another robust finding was that higher educational attainment increases alcohol use frequency, but decreases binge-drinking and alcohol use problems, and that mental disorders causally lead to more alcohol drinking without evidence for the reverse. CONCLUSIONS The current MR literature increases our understanding of the relationship between mental health and substance use. Bi-directional causal relationships are indicated, especially for smoking, providing further incentive to strengthen public health efforts to decrease substance use. Future MR studies should make use of large(r) samples in combination with detailed phenotypes, a wide range of sensitivity methods, and triangulate with other research methods.
Collapse
Affiliation(s)
- Jorien L. Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Addiction Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus R. Munafò
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, the University of Bristol, Bristol, UK
| | - Emma Logtenberg
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J. H. Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW On the basis of articles published in 2018, 2019 and 2020, the first aim of this review is to present estimates of incidence rates and excess mortality of overall cancer and organ-specific cancers for patients with schizophrenia compared with the general population.The second aim is to explore if underdiagnosis and undertreatment can explain - at least partly - the increased mortality of cancer in patients with schizophrenia compared with the general population. RECENT FINDINGS Patients diagnosed with schizophrenia have an approximately 50% increased risk of death by cancer compared to age and sex-matched people in the general population. Studies have confirmed an increased mortality from breast, lung and colon cancer in patients with schizophrenia.Analyses of incidence of cancer revealed contradicting results, with some studies showing no increase in incidence and others a modestly increased incidence in overall cancer. Studies of incidence of specific types of cancers showed modestly increased risk of pancreas, oesophagus, breast cancer and contradicting results regarding lung cancer.In studies identified that compared to the general population, patients with schizophrenia were at an increased risk of not being diagnosed or treated for cancer before death of cancer. In addition, patients with schizophrenia had lower chances of getting optimal treatment for colon cancer after diagnosis. SUMMARY This review indicates that patients with schizophrenia are at increased risk of dying of cancer and of several specific types of cancer. This increased mortality can be reduced if the price of tobacco is increased, if smoking cessation programmes are offered systematically, screening programs better implemented in this highly vulnerable group, and if procedures to facilitate access to early diagnosis and effective treatment are implemented.
Collapse
|
19
|
Lu D, Song J, Lu Y, Fall K, Chen X, Fang F, Landén M, Hultman CM, Czene K, Sullivan P, Tamimi RM, Valdimarsdóttir UA. A shared genetic contribution to breast cancer and schizophrenia. Nat Commun 2020; 11:4637. [PMID: 32934226 PMCID: PMC7492262 DOI: 10.1038/s41467-020-18492-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/21/2020] [Indexed: 01/12/2023] Open
Abstract
An association between schizophrenia and subsequent breast cancer has been suggested; however the risk of schizophrenia following a breast cancer is unknown. Moreover, the driving forces of the link are largely unclear. Here, we report the phenotypic and genetic positive associations of schizophrenia with breast cancer and vice versa, based on a Swedish population-based cohort and GWAS data from international consortia. We observe a genetic correlation of 0.14 (95% CI 0.09-0.19) and identify a shared locus at 19p13 (GATAD2A) associated with risks of breast cancer and schizophrenia. The epidemiological bidirectional association between breast cancer and schizophrenia may partly be explained by the genetic overlap between the two phenotypes and, hence, shared biological mechanisms.
Collapse
Affiliation(s)
- Donghao Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, 02115, MA, USA.
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden.
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Campus USÖ, 70182, Örebro, Sweden
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 17177, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Blå stråket 15, 41345, Gothenburg, Sweden
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
- Department of Psychiatry, Icahn School of Medicine, Mt. Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
| | - Patrick Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, 02115, MA, USA
- Department of Healthcare Research and Policy, Weill Cornell Medicine, 402 East 67th Street, New York, NY, 10065, USA
| | - Unnur A Valdimarsdóttir
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 17177, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, 02115, MA, USA
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland
| |
Collapse
|
20
|
Adams CD, Neuhausen SL. Bi-directional Mendelian randomization of epithelial ovarian cancer and schizophrenia and uni-directional Mendelian randomization of schizophrenia on circulating 1- or 2-glycerophosphocholine metabolites. Mol Genet Metab Rep 2019; 21:100539. [PMID: 31844628 PMCID: PMC6895746 DOI: 10.1016/j.ymgmr.2019.100539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023] Open
Abstract
Most women with epithelial ovarian cancer (EOC) present with late-stage disease. As a result, globally, EOC is responsible for >150,000 deaths a year. Thus, a better understanding of risk factors for developing EOC is crucial for earlier screening and detection to improve survival. To that effort, there have been suggestions that there is an association of schizophrenia and cancer, possibly because metabolic changes are a hallmark of both cancer and schizophrenia (SZ). Perturbed choline metabolism has been documented in both diseases. Our objective was to use Mendelian randomization to evaluate whether SZ increased risk for developing EOC or the converse, and, whether SZ impacted 1- or 2-glycerophosphocholine (1- or 2-GPC) metabolites. We found that SZ conferred a weak but increased risk for EOC, but not the reverse (no evidence that EOC caused SZ). SZ was also causally associated with lower levels of two 1- or 2-GPC species and with suggestively lower levels in an additional three 1- or 2-GPCs. We postulate that perturbed choline metabolism in SZ may mimic or contribute to a "cholinic" phenotype, as observed in EOC cells.
Collapse
Affiliation(s)
- Charleen D. Adams
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | |
Collapse
|