1
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. Anomalous networks under the multispecies coalescent: theory and prevalence. J Math Biol 2024; 88:29. [PMID: 38372830 DOI: 10.1007/s00285-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of [Formula: see text]-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
2
|
Ané C, Fogg J, Allman ES, Baños H, Rhodes JA. ANOMALOUS NETWORKS UNDER THE MULTISPECIES COALESCENT: THEORY AND PREVALENCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553582. [PMID: 37662314 PMCID: PMC10473666 DOI: 10.1101/2023.08.18.553582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admixture, recombination and hybrid speciation. Extending definitions from the tree setting, an anomalous network is one in which some unrooted tree topology displayed in the network appears in gene trees with a lower frequency than a tree not displayed in the network. We investigate anomalous networks under the Network Multispecies Coalescent Model with possible correlated inheritance at reticulations. Focusing on subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance factors on networks of any level, faster than previous algorithms because of its focus on 4 taxa. We then study topological properties required for a 4-taxon network to be anomalous, uncovering the key role of 32-cycles: cycles of 3 edges parent to a sister group of 2 taxa. Under the model of common inheritance, that is, when each gene tree coalesces within a species tree displayed in the network, we prove that 4-taxon networks are never anomalous. Under independent and various levels of correlated inheritance, we use simulations under realistic parameters to quantify the prevalence of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At the same time, however, we find a significant fraction of networks close enough to the anomaly zone to appear anomalous, when considering the quartet concordance factors observed from a few hundred genes. These apparent anomalies may challenge network inference methods.
Collapse
Affiliation(s)
- Cécile Ané
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
- Department of Botany, University of Wisconsin - Madison, WI, 53706, USA
| | - John Fogg
- Department of Statistics, University of Wisconsin - Madison, WI, 53706, USA
| | - Elizabeth S Allman
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| | - Hector Baños
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John A Rhodes
- Department of Mathematics and Statistics, University of Alaska - Fairbanks, AK, 99775-6660, USA
| |
Collapse
|
3
|
Dong S, Yu J, Zhang L, Goffinet B, Liu Y. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications. ANNALS OF BOTANY 2022; 130:951-964. [PMID: 36075207 PMCID: PMC9851303 DOI: 10.1093/aob/mcac113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS With some 7300 extant species, liverworts (Marchantiophyta) represent one of the major land plant lineages. The backbone relationships, such as the phylogenetic position of Ptilidiales, and the occurrence and timing of whole-genome duplications, are still contentious. METHODS Based on analyses of the newly generated transcriptome data for 38 liverworts and complemented with those publicly available, we reconstructed the evolutionary history of liverworts and inferred gene duplication events along the 55 taxon liverwort species tree. KEY RESULTS Our phylogenomic study provided an ordinal-level liverwort nuclear phylogeny and identified extensive gene tree conflicts and cyto-nuclear incongruences. Gene duplication analyses based on integrated phylogenomics and Ks distributions indicated no evidence of whole-genome duplication events along the backbone phylogeny of liverworts. CONCLUSIONS With a broadened sampling of liverwort transcriptomes, we re-evaluated the backbone phylogeny of liverworts, and provided evidence for ancient hybridizations followed by incomplete lineage sorting that shaped the deep evolutionary history of liverworts. The lack of whole-genome duplication during the deep evolution of liverworts indicates that liverworts might represent one of the few major embryophyte lineages whose evolution was not driven by whole-genome duplications.
Collapse
Affiliation(s)
- Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Jin Yu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| |
Collapse
|
4
|
Griffiths ME, Broos A, Bergner LM, Meza DK, Suarez NM, da Silva Filipe A, Tello C, Becker DJ, Streicker DG. Longitudinal deep sequencing informs vector selection and future deployment strategies for transmissible vaccines. PLoS Biol 2022; 20:e3001580. [PMID: 35439242 PMCID: PMC9017877 DOI: 10.1371/journal.pbio.3001580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination is a powerful tool in combating infectious diseases of humans and companion animals. In most wildlife, including reservoirs of emerging human diseases, achieving sufficient vaccine coverage to mitigate disease burdens remains logistically unattainable. Virally vectored "transmissible" vaccines that deliberately spread among hosts are a potentially transformative, but still theoretical, solution to the challenge of immunising inaccessible wildlife. Progress towards real-world application is frustrated by the absence of frameworks to guide vector selection and vaccine deployment prior to major in vitro and in vivo investments in vaccine engineering and testing. Here, we performed deep sequencing on field-collected samples of Desmodus rotundus betaherpesvirus (DrBHV), a candidate vector for a transmissible vaccine targeting vampire bat-transmitted rabies. We discovered 11 strains of DrBHV that varied in prevalence and geographic distribution across Peru. The phylogeographic structure of DrBHV strains was predictable from both host genetics and landscape topology, informing long-term DrBHV-vectored vaccine deployment strategies and identifying geographic areas for field trials where vaccine spread would be naturally contained. Multistrain infections were observed in 79% of infected bats. Resampling of marked individuals over 4 years showed within-host persistence kinetics characteristic of latency and reactivation, properties that might boost individual immunity and lead to sporadic vaccine transmission over the lifetime of the host. Further, strain acquisitions by already infected individuals implied that preexisting immunity and strain competition are unlikely to inhibit vaccine spread. Our results support the development of a transmissible vaccine targeting a major source of human and animal rabies in Latin America and show how genomics can enlighten vector selection and deployment strategies for transmissible vaccines.
Collapse
Affiliation(s)
- Megan E. Griffiths
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alice Broos
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Bergner
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Diana K. Meza
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Nicolas M. Suarez
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Carlos Tello
- Association for the Conservation and Development of Natural Resources, Lima, Peru
- Yunkawasi, Lima, Peru
| | - Daniel J. Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Daniel G. Streicker
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Leroy T, Rougemont Q. Introduction to Population Genomics Methods. Methods Mol Biol 2021; 2222:287-324. [PMID: 33301100 DOI: 10.1007/978-1-0716-0997-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-throughput sequencing technologies have provided an unprecedented opportunity to study the different evolutionary forces that have shaped present-day patterns of genetic diversity, with important implications for many directions in plant biology research. To manage such massive quantities of sequencing data, biologists, however, need new additional skills in informatics and statistics. In this chapter, our objective is to introduce population genomics methods to beginners following a learning-by-doing strategy in order to help the reader to analyze the sequencing data by themselves. Conducted analyses cover several main areas of evolutionary biology, such as an initial description of the evolutionary history of a given species or the identification of genes targeted by natural or artificial selection. In addition to the practical advices, we performed re-analyses of two cases studies with different kind of data: a domesticated cereal (African rice) and a non-domesticated tree species (sessile oak). All the code needed to replicate this work is publicly available on github ( https://github.com/ThibaultLeroyFr/Intro2PopGenomics/ ).
Collapse
Affiliation(s)
- Thibault Leroy
- Montpellier Institute of Evolutionary Sciences (ISEM), Université de Montpellier, Montpellier, France. .,Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| | - Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
| |
Collapse
|
6
|
Genome scan for selection in South American chickens reveals a region under selection associated with aggressiveness. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|