1
|
Swanson LR, Jungers S, Varghese R, Cullen KR, Evans MD, Nielson JL, Schallmo MP. Enhanced visual contrast suppression during peak psilocybin effects: Psychophysical results from a pilot randomized controlled trial. J Vis 2024; 24:5. [PMID: 39499526 PMCID: PMC11540033 DOI: 10.1167/jov.24.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
In visual perception, an effect known as surround suppression occurs wherein the apparent contrast of a center stimulus is reduced when it is presented within a higher-contrast surrounding stimulus. Many key aspects of visual perception involve surround suppression, yet the neuromodulatory processes involved remain unclear. Psilocybin is a serotonergic psychedelic compound known for its robust effects on visual perception, particularly texture, color, object, and motion perception. We asked whether surround suppression is altered under peak effects of psilocybin. Using a contrast-matching task with different center-surround stimulus configurations, we measured surround suppression after 25 mg of psilocybin compared with placebo (100 mg niacin). Data on harms were collected, and no serious adverse events were reported. After taking psilocybin, participants (n = 6) reported stronger surround suppression of perceived contrast compared to placebo. Furthermore, we found that the intensity of subjective psychedelic visuals induced by psilocybin correlated positively with the magnitude of surround suppression. We note the potential relevance of our findings for the field of psychiatry, given that studies have demonstrated weakened visual surround suppression in both major depressive disorder and schizophrenia. Our findings are thus relevant to understanding the visual effects of psilocybin, and the potential mechanisms of visual disruption in mental health disorders.
Collapse
Affiliation(s)
- Link Ray Swanson
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Jungers
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ranji Varghese
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jessica L Nielson
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Pokorny VJ, Schallmo MP, Sponheim SR, Olman CA. Weakened untuned gain control is associated with schizophrenia while atypical orientation-tuned suppression depends on visual acuity. J Vis 2023; 23:2. [PMID: 36723929 PMCID: PMC9904333 DOI: 10.1167/jov.23.2.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Perceptual distortions are core features of psychosis. Weakened contrast surround suppression has been proposed as a neural mechanism underlying atypical perceptual experiences. Although previous work has measured suppression by asking participants to report the perceived contrast of a low-contrast target surrounded by a high-contrast surround, it is possible to modulate perceived contrast solely by manipulating the orientation of a matched-contrast center and surround. Removing the bottom-up segmentation cue of contrast difference and isolating orientation-dependent suppression may clarify the neural processes responsible for atypical surround suppression in psychosis. We examined surround suppression across a spectrum of psychotic psychopathology including people with schizophrenia (PSZ; N = 31) and people with bipolar disorder (PBD; N = 29), first-degree biological relatives of these patient groups (PBDrel, PSZrel; N = 28, N = 21, respectively), and healthy controls (N = 29). PSZ exhibited reduced surround suppression across orientations; although group differences were minimal at the condition that produced the strongest suppression. PBD and PSZrel exhibited intermediate suppression, whereas PBDrel performed most similarly to controls. Intriguingly, group differences in orientation-dependent surround suppression magnitude were moderated by visual acuity. A simulation in which visual acuity and/or focal attention interact with untuned gain control reproduces the observed pattern of results, including the lack of group differences when orientation of center and surround are the same. Our findings further elucidate perceptual mechanisms of impaired center-surround processing in psychosis and provide insights into the effects of visual acuity on orientation-dependent suppression in PSZ.
Collapse
Affiliation(s)
- Victor J Pokorny
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,
| |
Collapse
|
4
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
5
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Makowski LM, Rammsayer TH, Tadin D, Thomas P, Troche SJ. On the interplay of temporal resolution power and spatial suppression in their prediction of psychometric intelligence. PLoS One 2022; 17:e0274809. [PMID: 36121867 PMCID: PMC9484675 DOI: 10.1371/journal.pone.0274809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
As a measure of the brain’s temporal fine-tuning capacity, temporal resolution power (TRP) explained repeatedly a substantial amount of variance in psychometric intelligence. Recently, spatial suppression, referred to as the increasing difficulty in quickly perceiving motion direction as the size of the moving stimulus increases, has attracted particular attention, when it was found to be positively related to psychometric intelligence. Due to the conceptual similarities of TRP and spatial suppression, the present study investigated their mutual interplay in the relation to psychometric intelligence in 273 young adults to better understand the reasons for these relationships. As in previous studies, psychometric intelligence was positively related to a latent variable representing TRP but, in contrast to previous reports, negatively to latent and manifest measures of spatial suppression. In a combined structural equation model, TRP still explained a substantial amount of variance in psychometric intelligence while the negative relation between spatial suppression and intelligence was completely explained by TRP. Thus, our findings confirmed TRP to be a robust predictor of psychometric intelligence but challenged the assumption of spatial suppression as a representation of general information processing efficiency as reflected in psychometric intelligence. Possible reasons for the contradictory findings on the relation between spatial suppression and psychometric intelligence are discussed.
Collapse
Affiliation(s)
| | | | - Duje Tadin
- Department of Brain and Cognitive Sciences, Neuroscience, Ophthalmology and Center for Visual Science, University of Rochester, Rochester, NY, United States of America
| | - Philipp Thomas
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Stefan J. Troche
- Institute of Psychology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Abstract
Psychophysical tests are commonly carried out using software applications running on desktop or laptop computers, but running the software on mobile handheld devices such as smartphones or tablets could have advantages in some situations. Here, we present StimuliApp, an open-source application in which the user can create psychophysical tests on the iPad and the iPhone by means of a system of menus. A wide number of templates for creating stimuli are available including patches, gradients, gratings, checkerboards, random-dots, texts, tones or auditory noise. Images, videos and audios stored in files could also be presented. The application was developed natively for iPadOS and iOS using the low-level interface Metal for accessing the graphics processing unit, which results in high timing performance.
Collapse
|