1
|
Sheffield JM, Brinen AP, Feola B, Heckers S, Corlett PR. Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100333. [PMID: 38952435 PMCID: PMC11215207 DOI: 10.1016/j.bpsgos.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
Psychological treatments for persecutory delusions, particularly cognitive behavioral therapy for psychosis, are efficacious; however, mechanistic theories explaining why they work rarely bridge to the level of cognitive neuroscience. Predictive coding, a general brain processing theory rooted in cognitive and computational neuroscience, has increasing experimental support for explaining symptoms of psychosis, including the formation and maintenance of delusions. Here, we describe recent advances in cognitive behavioral therapy for psychosis-based psychotherapy for persecutory delusions, which targets specific psychological processes at the computational level of information processing. We outline how Bayesian learning models employed in predictive coding are superior to simple associative learning models for understanding the impact of cognitive behavioral interventions at the algorithmic level. We review hierarchical predictive coding as an account of belief updating rooted in prediction error signaling. We examine how this process is abnormal in psychotic disorders, garnering noisy sensory data that is made sense of through the development of overly strong delusional priors. We argue that effective cognitive behavioral therapy for psychosis systematically targets the way sensory data are selected, experienced, and interpreted, thus allowing for the strengthening of alternative beliefs. Finally, future directions based on these arguments are discussed.
Collapse
Affiliation(s)
- Julia M. Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aaron P. Brinen
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip R. Corlett
- Department of Psychiatry, Clinical Neuroscience Research Unit, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Abstract
BACKGROUND AND HYPOTHESIS The neurocomputational framework of predictive processing (PP) provides a promising approach to explaining delusions, a key symptom of psychotic disorders. According to PP, the brain makes inferences about the world by weighing prior beliefs against the available sensory data. Mismatches between prior beliefs and sensory data result in prediction errors that may update the brain's model of the world. Psychosis has been associated with reduced weighting of priors relative to the sensory data. However, delusional beliefs are highly resistant to change, suggesting increased rather than decreased weighting of priors. We propose that this "delusion paradox" can be resolved within a hierarchical PP model: Reduced weighting of prior beliefs at low hierarchical levels may be compensated by an increased influence of higher-order beliefs represented at high hierarchical levels, including delusional beliefs. This may sculpt perceptual processing into conformity with delusions and foster their resistance to contradictory evidence. STUDY DESIGN We review several lines of experimental evidence on low- and high-level processes, and their neurocognitive underpinnings in delusion-related phenotypes and link them to predicted processing. STUDY RESULTS The reviewed evidence supports the notion of decreased weighting of low-level priors and increased weighting of high-level priors, in both delusional and delusion-prone individuals. Moreover, we highlight the role of prefrontal cortex as a neural basis for the increased weighting of high-level prior beliefs and discuss possible clinical implications of the proposed hierarchical predictive-processing model. CONCLUSIONS Our review suggests the delusion paradox can be resolved within a hierarchical PP model.
Collapse
Affiliation(s)
- Predrag Petrovic
- Center for Psychiatry Research (CPF), Center for Cognitive and Computational Neuropsychiatry (CCNP), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Sterzer
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Fossati G, Kiss-Bodolay D, Prados J, Chéreau R, Husi E, Cadilhac C, Gomez L, Silva BA, Dayer A, Holtmaat A. Bimodal modulation of L1 interneuron activity in anterior cingulate cortex during fear conditioning. Front Neural Circuits 2023; 17:1138358. [PMID: 37334059 PMCID: PMC10272719 DOI: 10.3389/fncir.2023.1138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.
Collapse
Affiliation(s)
- Giuliana Fossati
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniel Kiss-Bodolay
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ronan Chéreau
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Elodie Husi
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Lucia Gomez
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Bianca A. Silva
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | - Alexandre Dayer
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences, and Neurocenter, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|