1
|
Jordan AS, Woods MJ, Cori JM, Chan JKM, Nicholas CL, Semmler J, Trinder J. Motor control of the palatoglossus and genioglossus during changes in breathing route. J Appl Physiol (1985) 2024; 137:1409-1417. [PMID: 39323393 DOI: 10.1152/japplphysiol.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
High activity of upper airway dilator muscles is thought to be critical in preventing sleep-related upper airway collapse. To date, most of the research regarding upper airway dilator muscles has focused on the genioglossus muscle, which protrudes the tongue and opens the retroglossal airway. However, collapse commonly occurs in the retropalatal region. We, therefore, aimed to examine the motor control of the palatoglossus muscle as well as investigate breathing route-related changes in genioglossus and palatoglossus motor units. Single motor unit recordings of the genioglossus and palatoglossus were made simultaneously in healthy individuals during wakefulness while breathing through the nose with the mouth closed (NMC), nose with mouth open (NMO), or orally (OMO). The palatoglossus was found to have all five motor unit firing patterns that have been observed in other upper airway dilator muscles, but during nasal breathing had a higher proportion of tonically active but inspiratory modulated motor units as compared with the genioglossus (67% vs. 30%). When still breathing nasally but with the mouth open, the units with an expiratory firing pattern in genioglossus, and all firing patterns in palatoglossus, increased their firing rates compared with nasal breathing with the mouth closed [genioglossus (GG): 17.8 ± 4.9 vs. 23.1 ± 4.8 Hz, palatoglossus (PG): 17.0 ± 4.0 vs. 19.3 ± 4.0 Hz]. Finally, oral breathing resulted in dramatic reductions in the number of palatoglossal motor units that were firing (35 units vs. 92 during nasal breathing). Palatoglossal activity may contribute importantly to airway collapsibility and may provide an alternate pathway for preventing sleep-related airway collapse.NEW & NOTEWORTHY The firing patterns of motor units in the palatoglossus have until now not been investigated, and how they and motor units in the genioglossus change with breathing route alteration was not known. This study has shown that the palatoglossus contains motor units with all the firing patterns observed in the genioglossus but in different proportions. Furthermore, breathing route changes alter units with different firing patterns differentially in the two muscles.
Collapse
Affiliation(s)
- Amy S Jordan
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Michael J Woods
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer M Cori
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Julia K M Chan
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John Semmler
- Discipline of Physiology, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - John Trinder
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Dawson A, Avraam J, Nicholas CL, Kay A, Thornton T, Feast N, Fridgant MD, O’Donoghue FJ, Trinder J, Jordan AS. Mechanisms underlying the prolonged activation of the genioglossus following arousal from sleep. Sleep 2024; 47:zsad202. [PMID: 37503934 PMCID: PMC10782491 DOI: 10.1093/sleep/zsad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
STUDY OBJECTIVES Transient arousal from sleep has been shown to elicit a prolonged increase in genioglossus muscle activity that persists following the return to sleep and which may protect against subsequent airway collapse. We hypothesized that this increased genioglossal activity following return to sleep after an arousal is due to persistent firing of inspiratory-modulated motor units (MUs) that are recruited during the arousal. METHODS Thirty-four healthy participants were studied overnight while wearing a nasal mask with pneumotachograph to measure ventilation and with 4 intramuscular genioglossus EMG electrodes. During stable N2 and N3 sleep, auditory tones were played to induce brief (3-15s) AASM arousals. Ventilation and genioglossus MUs were quantified before the tone, during the arousal and for 10 breaths after the return to sleep. RESULTS A total of 1089 auditory tones were played and gave rise to 239 MUs recorded across arousal and the return to sleep in 20 participants (aged 23 ± 4.2 years and BMI 22.5 ± 2.2 kg/m2). Ventilation was elevated above baseline during arousal and the first post-arousal breath (p < .001). Genioglossal activity was elevated for five breaths following the return to sleep, due to increased firing rate and recruitment of inspiratory modulated MUs, as well as a small increase in tonic MU firing frequency. CONCLUSIONS The sustained increase in genioglossal activity that occurs on return to sleep after arousal is primarily a result of persistent activity of inspiratory-modulated MUs, with a slight contribution from tonic units. Harnessing genioglossal activation following arousal may potentially be useful for preventing obstructive respiratory events.
Collapse
Affiliation(s)
- Andrew Dawson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne Avraam
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Amanda Kay
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Thornton
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole Feast
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Monika D Fridgant
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Fergal J O’Donoghue
- Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Faculty of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - John Trinder
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
3
|
Avraam J, Dawson A, Nicholas CL, Fridgant MD, Fan FL, Kay A, Koay ZY, Greig R, O'Donoghue FJ, Trinder J, Jordan AS. The influence of alcohol on genioglossus single motor units in men and women during wakefulness. Exp Physiol 2023; 108:491-502. [PMID: 36533973 PMCID: PMC10103883 DOI: 10.1113/ep090580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does alcohol intake, which worsens obstructive sleep apnoea, alter motor control of the genioglossus muscle, an upper airway dilator, in healthy awake human volunteers, and does alcohol alter genioglossus muscle afterdischarge? What is the main finding and its importance? Alcohol consumption had a very minor effect on the activity of the genioglossus in healthy young individuals studied during wakefulness and did not alter afterdischarge, leaving open the possibility that alcohol worsens obstructive sleep apnoea via other mechanisms. ABSTRACT Alcohol worsens obstructive sleep apnoea (OSA). This effect is thought to be due to alcohol's depressant effect on upper airway dilator muscles such as the genioglossus, but how alcohol reduces genioglossal activity is unknown. The aim of this study was to investigate the effect of alcohol consumption on genioglossus muscle single motor units (MUs). Sixteen healthy individuals were studied on two occasions (alcohol: breath alcohol concentration ∼0.07% and placebo). They were instrumented with a nasal mask, four intramuscular genioglossal EMG electrodes, and an ear oximeter. They were exposed to 8-12 hypoxia trials (45-60 s of 10% O2 followed by one breath of 100% O2 ) while awake. MUs were sorted according to their firing patterns and quantified during baseline, hypoxia and recovery. For the alcohol and placebo conditions, global muscle activity (mean ± SD peak inspiratory EMG = 119.3 ± 44.1 and 126.5 ± 51.9 μV, respectively, P = 0.53) and total number of MUs recorded at baseline (68 and 67, respectively) were similar. Likewise, the peak discharge frequency did not differ between conditions (21.2 ± 4.28 vs. 22.4 ± 4.08 Hz, P = 0.09). There was no difference between conditions in the number (101 vs. 88, respectively) and distribution of MU classes during hypoxia, and afterdischarge duration was also similar. In this study, alcohol had a very minor effect on genioglossal activity and afterdischarge in these otherwise healthy young individuals studied while awake. If similar effects are observed during sleep, it would suggest that the worsening of OSA following alcohol may be related to increased upper airway resistance/nasal congestion or arousal threshold changes.
Collapse
Affiliation(s)
- Joanne Avraam
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and SleepAustin HealthHeidelbergVictoriaAustralia
| | - Andrew Dawson
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Christian L. Nicholas
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and SleepAustin HealthHeidelbergVictoriaAustralia
| | - Monika D. Fridgant
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Feiven Lee Fan
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Amanda Kay
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Zi Yi Koay
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Rachel Greig
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Fergal J. O'Donoghue
- Department of Respiratory and Sleep Medicine and Institute for Breathing and SleepAustin HealthHeidelbergVictoriaAustralia
- Faculty of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| | - John Trinder
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Amy S. Jordan
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
- Department of Respiratory and Sleep Medicine and Institute for Breathing and SleepAustin HealthHeidelbergVictoriaAustralia
| |
Collapse
|
4
|
Lulic-Kuryllo T, Greig Inglis J. Sex differences in motor unit behaviour: A review. J Electromyogr Kinesiol 2022; 66:102689. [PMID: 36095969 DOI: 10.1016/j.jelekin.2022.102689] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022] Open
|
5
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Avraam J, Dawson A, Feast N, Fan FL, D Frigant M, Kay A, Koay ZY, Jia P, Greig R, Thornton T, Nicholas CL, O'Donoghue FJ, Trinder J, Jordan AS. After-Discharge in the Upper Airway Muscle Genioglossus Following Brief Hypoxia. Sleep 2021; 44:6208283. [PMID: 33822200 DOI: 10.1093/sleep/zsab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Genioglossus after-discharge is thought to protect against pharyngeal collapse by minimising periods of low upper airway muscle activity. How genioglossus after-discharge occurs and which single motor units (SMUs) are responsible for the phenomenon are unknown. The aim of this study was to investigate genioglossal after-discharge. METHODS During wakefulness, after-discharge was elicited 8-12 times in healthy individuals with brief isocapnic hypoxia (45-60s of 10%O2 in N2) terminated by a single breath of 100% O2. Genioglossus SMUs were designated as firing solely, or at increased rate, during inspiration (Inspiratory phasic [IP] and inspiratory tonic [IT] respectively); solely, or at increased rate, during expiration (Expiratory phasic [EP] or expiratory tonic [ET] respectively) or firing constantly without respiratory modulation (Tonic). SMUs were quantified at baseline, the end of hypoxia, the hyperoxic breath and the following 8 normoxic breaths. RESULTS 210 SMU's were identified in 17 participants. Genioglossus muscle activity was elevated above baseline for 7 breaths after hyperoxia (p<0.001), indicating a strong after-discharge effect. After-discharge occurred due to persistent firing of IP and IT units that were recruited during hypoxia, with minimal changes in ET, EP or Tonic SMUs. The firing frequency of units that were already active changed minimally during hypoxia or the afterdischarge period (P>0.05). CONCLUSION That genioglossal after-discharge is almost entirely due to persistent firing of previously silent inspiratory SMUs provides insight into the mechanisms responsible for the phenomenon and supports the hypothesis that the inspiratory and expiratory/tonic motor units within the muscle have idiosyncratic functions.
Collapse
Affiliation(s)
- Joanne Avraam
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.,Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Andrew Dawson
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole Feast
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Feiven Lee Fan
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Monika D Frigant
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Amanda Kay
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Zi Yi Koay
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Pingdong Jia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Rachel Greig
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Therese Thornton
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.,Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Fergal J O'Donoghue
- Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - John Trinder
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.,Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
7
|
Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo. Sci Rep 2020; 10:550. [PMID: 31953471 PMCID: PMC6969049 DOI: 10.1038/s41598-019-57328-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.
Collapse
|
8
|
Şenel G, Karaali-Savrun F, Adatepe N, Inan R, Kaynak H, Kaytaz A, Karadeniz D. Motor unit potential analysis of the palatal muscles in obstructive sleep apnea syndrome. NEUROL SCI NEUROPHYS 2020. [DOI: 10.4103/nsn.nsn_14_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Ruehland WR, Rochford PD, Pierce RJ, Trinder J, Jordan AS, Cori JM, O'Donoghue FJ. Genioglossus muscle responses to resistive loads in severe OSA patients and healthy control subjects. J Appl Physiol (1985) 2019; 127:1586-1598. [PMID: 31647723 DOI: 10.1152/japplphysiol.00186.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine whether there is impairment of genioglossus neuromuscular responses to small negative pressure respiratory stimuli, close to the conscious detection threshold, in obstructive sleep apnea (OSA). We compared genioglossus electromyogram (EMGgg) responses to midinspiratory resistive loads of varying intensity (≈1.2-6.2 cmH2O·L-1·s), delivered via a nasal mask, between 16 severe OSA and 17 control participants while the subjects were awake and in a seated upright position. We examined the relationship between stimulus intensity and peak EMGgg amplitude in a 200-ms poststimulus window and hypothesized that OSA patients would have an increased activation threshold and reduced sensitivity in the relationship between EMGgg activation and stimulus intensity. There was no significant difference between control and OSA participants in the threshold (P = 0.545) or the sensitivity (P = 0.482) of the EMGgg amplitude vs. stimulus intensity relationship, where change in epiglottic pressure relative to background epiglottic pressure represented stimulus intensity. These results do not support the hypothesis that deficits in neuromuscular response to negative upper airway pressure exist in OSA during wakefulness; however, the results are likely influenced by a counterintuitive and novel genioglossus muscle suppression response observed in a significant proportion of both OSA and healthy control participants. This suppression response may relate to the inhibition seen in inspiratory muscles such as the diaphragm in response to sudden-onset negative pressure, and its presence provides new insight into the upper airway neuromuscular response to the collapsing force of negative pressure.NEW & NOTEWORTHY Our study used a novel midinspiratory resistive load stimulus to study upper airway neuromuscular responses to negative pressure during wakefulness in obstructive sleep apnea (OSA). Although no differences were found between OSA and healthy groups, the study uncovered a novel and unexpected suppression of neuromuscular activity in a large proportion of both OSA and healthy participants. The unusual response provides new insight into the upper airway neuromuscular response to the collapsing force of negative pressure.
Collapse
Affiliation(s)
- Warren R Ruehland
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Peter D Rochford
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Robert J Pierce
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - John Trinder
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Amy S Jordan
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer M Cori
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Fergal J O'Donoghue
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
10
|
Cori JM, O'Donoghue FJ, Jordan AS. Sleeping tongue: current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nat Sci Sleep 2018; 10:169-179. [PMID: 29942169 PMCID: PMC6007201 DOI: 10.2147/nss.s143296] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this review was on the genioglossus (GG) muscle and its role in maintaining upper airway patency in both healthy individuals and obstructive sleep apnea (OSA) patients. This review provided an overview of GG anatomy and GG control and function during both wakefulness and sleep in healthy individuals and in those with OSA. We reviewed evidence for the role of the GG in OSA pathogenesis and also highlighted abnormalities in GG morphology, responsiveness, tissue movement patterns and neurogenic control that may contribute to or result from OSA. We summarized the different methods for improving GG function and/or activity in OSA and their efficacy. In addition, we discussed the possibility that assessing the synergistic activation of multiple upper airway dilator muscles may provide greater insight into upper airway function and OSA pathogenesis, rather than assessing the GG in isolation.
Collapse
Affiliation(s)
- Jennifer M Cori
- Department of Respiratory and Sleep Medicine, Institute for Breathing and Sleep, Austin Hospital, Heidelberg, VIC, Australia
| | - Fergal J O'Donoghue
- Department of Respiratory and Sleep Medicine, Institute for Breathing and Sleep, Austin Hospital, Heidelberg, VIC, Australia
| | - Amy S Jordan
- Department of Psychology, Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Hicks A, Cori JM, Jordan AS, Nicholas CL, Kubin L, Semmler JG, Malhotra A, McSharry DGP, Trinder JA. Mechanisms of the deep, slow-wave, sleep-related increase of upper airway muscle tone in healthy humans. J Appl Physiol (1985) 2017; 122:1304-1312. [PMID: 28255086 DOI: 10.1152/japplphysiol.00872.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Upper airway muscle activity is reportedly elevated during slow-wave sleep (SWS) when compared with lighter sleep stages. To uncover the possible mechanisms underlying this elevation, we explored the correlation between different indices of central and reflex inspiratory drive, such as the changes in airway pressure and end-expiratory CO2 and the changes in the genioglossus (GG) and tensor palatini (TP) muscle activity accompanying transitions from the lighter N2 to the deeper N3 stage of non-rapid eye movement (NREM) sleep in healthy young adult men. Forty-six GG and 38 TP continuous electromyographic recordings were obtained from 16 men [age: 20 ± 2.5 (SD) yr; body mass index: 22.5 ± 1.8 kg/m2] during 32 transitions from NREM stages N2 to N3. GG but not TP activity increased following transition into N3 sleep, and the increase was positively correlated with more negative airway pressure, increased end-tidal CO2, increased peak inspiratory flow, and increased minute ventilation. None of these correlations was statistically significant for TP. Complementary GG and TP single motor unit analysis revealed a mild recruitment of GG units and derecruitment of TP units during the N2 to N3 transitions. These findings suggest that, in healthy individuals, the increased GG activity during SWS is driven primarily by reflex stimulation of airway mechanoreceptors and central chemoreceptors.NEW & NOTEWORTHY The characteristic increase in the activity of the upper airway dilator muscle genioglossus during slow-wave sleep (SWS) in young healthy individuals was found to be related to increased stimulation of airway mechanoreceptors and central chemoreceptors. No evidence was found for the presence of a central SWS-specific drive stimulating genioglossus activity in young healthy individuals. However, it remains to be determined whether a central drive exists in obstructive sleep apnea patients.
Collapse
Affiliation(s)
- Amelia Hicks
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Christian L Nicholas
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John G Semmler
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California at San Diego, San Diego, California; and
| | - David G P McSharry
- School of Medicine and Medical Science, University College Dublin and Mater Misericordiae University Hospital, Dublin, Ireland
| | - John A Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
12
|
Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ. Arousal Intensity is a Distinct Pathophysiological Trait in Obstructive Sleep Apnea. Sleep 2016; 39:2091-2100. [PMID: 27784404 DOI: 10.5665/sleep.6304] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/03/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Arousals from sleep vary in duration and intensity. Accordingly, the physiological consequences of different types of arousals may also vary. Factors that influence arousal intensity are only partly understood. This study aimed to determine if arousal intensity is mediated by the strength of the preceding respiratory stimulus, and investigate other factors mediating arousal intensity and its role on post-arousal ventilatory and pharyngeal muscle responses. METHODS Data were acquired in 71 adults (17 controls, 54 obstructive sleep apnea patients) instrumented with polysomnography equipment plus genioglossus and tensor palatini electromyography (EMG), a nasal mask and pneumotachograph, and an epiglottic pressure sensor. Transient reductions in CPAP were delivered during sleep to induce respiratory-related arousals. Arousal intensity was measured using a validated 10-point scale. RESULTS Average arousal intensity was not related to the magnitude of the preceding respiratory stimuli but was positively associated with arousal duration, time to arousal, rate of change in epiglottic pressure and negatively with BMI (R2 > 0.10, P ≤ 0.006). High (> 5) intensity arousals caused greater ventilatory responses than low (≤ 5) intensity arousals (10.9 [6.8-14.5] vs. 7.8 [4.7-12.9] L/min; P = 0.036) and greater increases in tensor palatini EMG (10 [3-17] vs. 6 [2-11]%max; P = 0.031), with less pronounced increases in genioglossus EMG. CONCLUSIONS Average arousal intensity is independent of the preceding respiratory stimulus. This is consistent with arousal intensity being a distinct trait. Respiratory and pharyngeal muscle responses increase with arousal intensity. Thus, patients with higher arousal intensities may be more prone to respiratory control instability. These findings are important for sleep apnea pathogenesis.
Collapse
Affiliation(s)
- Jason Amatoury
- Neuroscience Research Australia (NeuRA), and the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ali Azarbarzin
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Magdy Younes
- YRT Ltd, Winnipeg, Manitoba, Canada.,Sleep Disorders Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy S Jordan
- Institute for Breathing and Sleep, and Melbourne School of Physiological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Wellman
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), and the School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Muceli S, Poppendieck W, Negro F, Yoshida K, Hoffmann KP, Butler JE, Gandevia SC, Farina D. Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thin-film electrodes. J Physiol 2016; 593:3789-804. [PMID: 26174910 DOI: 10.1113/jp270902] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Intramuscular electrodes developed over the past 80 years can record the concurrent activity of only a few motor units active during a muscle contraction. We designed, produced and tested a novel multi-channel intramuscular wire electrode that allows in vivo concurrent recordings of a substantially greater number of motor units than with conventional methods. The electrode has been extensively tested in deep and superficial human muscles. The performed tests indicate the applicability of the proposed technology in a variety of conditions. The electrode represents an important novel technology that opens new avenues in the study of the neural control of muscles in humans. We describe the design, fabrication and testing of a novel multi-channel thin-film electrode for detection of the output of motoneurones in vivo and in humans, through muscle signals. The structure includes a linear array of 16 detection sites that can sample intramuscular electromyographic activity from the entire muscle cross-section. The structure was tested in two superficial muscles (the abductor digiti minimi (ADM) and the tibialis anterior (TA)) and a deep muscle (the genioglossus (GG)) during contractions at various forces. Moreover, surface electromyogram (EMG) signals were concurrently detected from the TA muscle with a grid of 64 electrodes. Surface and intramuscular signals were decomposed into the constituent motor unit (MU) action potential trains. With the intramuscular electrode, up to 31 MUs were identified from the ADM muscle during an isometric contraction at 15% of the maximal force (MVC) and 50 MUs were identified for a 30% MVC contraction of TA. The new electrode detects different sources from a surface EMG system, as only one MU spike train was found to be common in the decomposition of the intramuscular and surface signals acquired from the TA. The system also allowed access to the GG muscle, which cannot be analysed with surface EMG, with successful identification of MU activity. With respect to classic detection systems, the presented thin-film structure enables recording from large populations of active MUs of deep and superficial muscles and thus can provide a faithful representation of the neural drive sent to a muscle.
Collapse
Affiliation(s)
- Silvia Muceli
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, 37075, Göttingen, Germany
| | - Wigand Poppendieck
- Department of Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386, St Ingbert, Germany
| | - Francesco Negro
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, 37075, Göttingen, Germany
| | - Ken Yoshida
- Biomedical Engineering Department, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202-5160, USA
| | - Klaus P Hoffmann
- Department of Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386, St Ingbert, Germany
| | - Jane E Butler
- Neuroscience Research Australia, Barker St, Randwick and University of New South Wales, Sydney, NSW, 2031, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Barker St, Randwick and University of New South Wales, Sydney, NSW, 2031, Australia
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, 37075, Göttingen, Germany
| |
Collapse
|
14
|
Woods MJ, Nicholas CL, Semmler JG, Chan JKM, Jordan AS, Trinder J. Common drive to the upper airway muscle genioglossus during inspiratory loading. J Neurophysiol 2015; 114:2883-92. [PMID: 26378207 DOI: 10.1152/jn.00738.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0-5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect.
Collapse
Affiliation(s)
- Michael J Woods
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - John G Semmler
- School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julia K M Chan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| | - John Trinder
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; and
| |
Collapse
|
15
|
Dotan Y, Pillar G, Schwartz AR, Oliven A. Asynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea. J Appl Physiol (1985) 2015; 118:1516-24. [DOI: 10.1152/japplphysiol.00937.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Pharyngeal collapsibility during sleep increases primarily due to decline in dilator muscle activity. However, genioglossus EMG is known to increase during apneas and hypopneas, usually without reversing upper airway obstruction or inspiratory flow limitation. The present study was undertaken to test the hypothesis that intense activation of the genioglossus fails to prevent pharyngeal obstruction during sleep, and to evaluate if sleep-induced changes in tongue muscle coordination may be responsible for this phenomenon. We compared genioglossus and tongue retractors EMG activity in 13 obstructive sleep apnea (OSA) patients during wakefulness, while breathing through inspiratory resistors, to the activity observed at the end of apneas and hypopneas after 25 mg of brotizolam, before arousal, at equal esophageal pressure. During wakefulness, resistive breathing triggered increases in both genioglossus and retractor EMG. Activation of agonist tongue muscles differed considerably from that of the arm, as both genioglossus and retractors were activated similarly during all tongue movements. During sleep, flow limitation triggered increases in genioglossal EMG that could reach more than twofold the level observed while awake. In contrast, EMGs of the retractors reached less than half the wakefulness level. In sleeping OSA patients, genioglossal activity may increase during obstructed breathing to levels that exceed substantially those required to prevent pharyngeal collapse during wakefulness. In contrast, coactivation of retractors is deficient during sleep. These findings suggest that sleep-induced alteration in tongue muscle coordination may be responsible for the failure of high genioglossal EMG activity to alleviate flow limitation.
Collapse
Affiliation(s)
| | - Giora Pillar
- Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Carmel Medical Centre, Haifa, Israel
- Sleep Laboratory, Technion, Haifa, Israel; and
| | - Alan R. Schwartz
- Sleep Disorders Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Arie Oliven
- Bnai-Zion Medical Centre, Haifa, Israel
- Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Kubin L, Jordan AS, Nicholas CL, Cori JM, Semmler JG, Trinder J. Crossed motor innervation of the base of human tongue. J Neurophysiol 2015; 113:3499-510. [PMID: 25855691 DOI: 10.1152/jn.00051.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25-190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39-96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue.
Collapse
Affiliation(s)
- Leszek Kubin
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia;
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | | | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - John G Semmler
- School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - John Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Folha GA, Valera FCP, de Felício CM. Validity and reliability of a protocol of orofacial myofunctional evaluation for patients with obstructive sleep apnea. Eur J Oral Sci 2015; 123:165-72. [DOI: 10.1111/eos.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Gislaine A. Folha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
- Craniofacial Research Support Center; University of São Paulo; Ribeirão Preto Brazil
| | - Fabiana C. P. Valera
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
- Craniofacial Research Support Center; University of São Paulo; Ribeirão Preto Brazil
| | - Cláudia M. de Felício
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
- Craniofacial Research Support Center; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
18
|
Vranish JR, Bailey EF. A comprehensive assessment of genioglossus electromyographic activity in healthy adults. J Neurophysiol 2015; 113:2692-9. [PMID: 25695653 DOI: 10.1152/jn.00975.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/12/2015] [Indexed: 12/23/2022] Open
Abstract
The genioglossus (GG) is an extrinsic muscle of the human tongue that plays a critical role in preserving airway patency. In the last quarter century, >50 studies have reported on respiratory-related GG electromyographic (EMG) activity in human subjects. Remarkably, of the studies performed, none have duplicated subject body position, electrode recording locations, and/or breathing task(s), making interpretation and integration of the results across studies extremely challenging. In addition, more recent research assessing lingual anatomy and muscle contractile properties has identified regional differences in muscle fiber type and myosin heavy chain expression, giving rise to the possibility that the anterior and posterior regions of the muscle fulfill distinct functions. Here, we assessed EMG activity in anterior and posterior regions of the GG, across upright and supine, in rest breathing and in volitionally modulated breathing tasks. We tested the hypotheses that GG EMG is greater in the posterior region and in supine, except when breathing is subject to volitional modulation. Our results show differences in the magnitude of EMG (%regional maximum) between anterior and posterior muscle regions (7.95 ± 0.57 vs. 11.10 ± 0.99, respectively; P < 0.001), and between upright and supine (8.63 ± 0.73 vs. 10.42 ± 0.90, respectively; P = 0.008). Although the nature of a task affects the magnitude of EMG (P < 0.001), the effect is similar for anterior and posterior muscle regions and across upright and supine (P > 0.2).
Collapse
Affiliation(s)
- Jennifer R Vranish
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - E Fiona Bailey
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
19
|
Buterbaugh J, Wynstra C, Provencio N, Combs D, Gilbert M, Parthasarathy S. Cerebrovascular reactivity in young subjects with sleep apnea. Sleep 2015; 38:241-50. [PMID: 25409111 DOI: 10.5665/sleep.4406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 10/24/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Regional brain alterations may be involved in the pathogenesis and adverse consequences of obstructive sleep apnea (OSA). The objectives for the current study were to (1) determine cerebrovascular reactivity in the motor areas that control upper airway musculature in patients with OSA, and (2) determine whether young patients with OSA have decreased cerebrovascular reactivity in response to breath holding. DESIGN Case-control study. SETTING Academic center. PARTICIPANTS Twelve subjects with OSA (age 24-42 y; apnea-hypopnea index 17; interquartile range [IQR] 9, 69 per hour) and control subjects (n = 10; age 29-44 y; AHI 2; IQR 1, 3 per hour). MEASUREMENTS AND RESULTS Subjects underwent blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) while awake, swallowing, and breath holding. In subjects with OSA, during swallowing, there was less activity in the brainstem than in controls (P = 0.03) that remained reduced after adjusting for cortical motor strip activity (P = 0.036). In OSA subjects, brain regions of increased cerebrovascular reactivity (38; IQR 17, 96 cm(3)) was smaller than that in controls (199; IQR 5, 423 cm(3); P = 0.01). In OSA subjects, brain regions of decreased cerebrovascular reactivity during breath hold was greater (P = 0.01), and the ratio of increased-to-decreased brain regions was lower than that of controls (P = 0.006). Adjustment for cerebral volumes, body mass index, and white matter lesions did not change these results substantively. CONCLUSIONS In patients with obstructive sleep apnea (OSA), diminished change in brainstem activity during swallowing and reduced cerebrovascular reactivity may contribute to the etiopathogenesis and adverse cerebrovascular consequences, respectively. We speculate that decreased cerebral auto-regulation may be causative of gray matter loss in OSA.
Collapse
Affiliation(s)
- John Buterbaugh
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ
| | - Charles Wynstra
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ
| | - Natalie Provencio
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ
| | - Daniel Combs
- Arizona Respiratory Center, Tucson, AZ.,Department of Medicine of University of Arizona, Tucson, AZ
| | - Michael Gilbert
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ
| | - Sairam Parthasarathy
- Southern Arizona Veterans Administration Health Care System, Tucson, AZ.,Arizona Respiratory Center, Tucson, AZ.,Department of Medicine of University of Arizona, Tucson, AZ
| |
Collapse
|
20
|
Trinder J, Jordan AS, Nicholas CL. Discharge properties of upper airway motor units during wakefulness and sleep. PROGRESS IN BRAIN RESEARCH 2014; 212:59-75. [DOI: 10.1016/b978-0-444-63488-7.00004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Ramirez JM. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. PROGRESS IN BRAIN RESEARCH 2014; 209:91-129. [PMID: 24746045 DOI: 10.1016/b978-0-444-63274-6.00006-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Edge D, McDonald FB, Jones JFX, Bradford A, O'Halloran KD. Effect of chronic intermittent hypoxia on the reflex recruitment of the genioglossus during airway obstruction in the anesthetized rat. PROGRESS IN BRAIN RESEARCH 2014; 209:147-68. [PMID: 24746047 DOI: 10.1016/b978-0-444-63274-6.00008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We sought to test the hypothesis that chronic intermittent hypoxia (CIH)-a feature of sleep-disordered breathing in humans-impairs reflex recruitment of the genioglossus (GG, pharyngeal dilator) during obstructive airway events. Adult male Wistar rats were exposed to 20 cycles of normoxia and hypoxia (5% O2 at nadir) per hour, 8h a day for 7 days (CIH, N=7). The sham group (N=7) were exposed to normoxia in parallel. Following gas treatments, rats were anesthetized with an i.p. injection of urethane (1.5g/kg; 20%, w/v). Fine concentric needle electrodes were inserted into the GG and the costal diaphragm. Discriminated GG motor unit potentials and whole electromyograph (EMG), together with arterial blood pressure and arterial O2 saturation, were recorded during quiet basal breathing and during nasal airway occlusion. Airway occlusion significantly increased GG EMG activity in all animals; but there was no difference in the reflex response to airway occlusion between sham and CIH-treated animals (+105±22% vs. +105±17%, mean±SEM for area under the curve of integrated GG EMG, % increase from baseline, p=0.99). Occluded breaths were characterized by a significant increase in the firing frequency of phasically active units and the recruitment of large motor units that were quiescent under basal conditions. Though there are reports of impaired control of the upper airway following CIH in the rat, we conclude that reflexly evoked motor discharge to the GG is not affected by 7 days of CIH, a paradigm that we have shown increases apnea index in sleeping rats.
Collapse
Affiliation(s)
- Deirdre Edge
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | - Fiona B McDonald
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - James F X Jones
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Aidan Bradford
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ken D O'Halloran
- Department of Physiology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Butler JE, Hudson AL, Gandevia SC. The Neural Control of Human Inspiratory Muscles. PROGRESS IN BRAIN RESEARCH 2014; 209:295-308. [DOI: 10.1016/b978-0-444-63274-6.00015-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Strohl KP, Butler JP, Malhotra A. Mechanical properties of the upper airway. Compr Physiol 2013; 2:1853-72. [PMID: 23723026 DOI: 10.1002/cphy.c110053] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions.
Collapse
Affiliation(s)
- Kingman P Strohl
- Center for Sleep Disorders Research, Division of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
25
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
26
|
Powell GL, Rice A, Bennett-Cross SJ, Fregosi RF. Respiration-related discharge of hyoglossus muscle motor units in the rat. J Neurophysiol 2013; 111:361-8. [PMID: 24133219 DOI: 10.1152/jn.00670.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.
Collapse
Affiliation(s)
- Gregory L Powell
- Department of Physiology, The University of Arizona, Tucson, Arizona; and
| | | | | | | |
Collapse
|
27
|
Trinder J, Woods M, Nicholas CL, Chan JK, Jordan AS, Semmler JG. Motor unit activity in upper airway muscles genioglossus and tensor palatini. Respir Physiol Neurobiol 2013; 188:362-9. [DOI: 10.1016/j.resp.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
28
|
Eckert DJ, Younes MK. Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol (1985) 2013; 116:302-13. [PMID: 23990246 DOI: 10.1152/japplphysiol.00649.2013] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Historically, brief awakenings from sleep (cortical arousals) have been assumed to be vitally important in restoring airflow and blood-gas disturbances at the end of obstructive sleep apnea (OSA) breathing events. Indeed, in patients with blunted chemical drive (e.g., obesity hypoventilation syndrome) and in instances when other defensive mechanisms fail, cortical arousal likely serves an important protective role. However, recent insight into the pathogenesis of OSA indicates that a substantial proportion of respiratory events do not terminate with a cortical arousal from sleep. In many cases, cortical arousals may actually perpetuate blood-gas disturbances, breathing instability, and subsequent upper airway closure during sleep. This brief review summarizes the current understanding of the mechanisms mediating respiratory-induced cortical arousal, the physiological factors that influence the propensity for cortical arousal, and the potential dual roles that cortical arousal may play in OSA pathogenesis. Finally, the extent to which existing sedative agents decrease the propensity for cortical arousal and their potential to be therapeutically beneficial for certain OSA patients are highlighted.
Collapse
Affiliation(s)
- Danny J Eckert
- Neuroscience Research Australia (NeuRA Randwick, New South Wales, Australia
| | | |
Collapse
|
29
|
Ramirez JM, Garcia AJ, Anderson TM, Koschnitzky JE, Peng YJ, Kumar GK, Prabhakar NR. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189:344-53. [PMID: 23770311 DOI: 10.1016/j.resp.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
Apnea, the cessation of breathing, is a common physiological and pathophysiological phenomenon. Among the different forms of apnea, obstructive sleep apnea (OSA) is clinically the most prominent manifestation. OSA is characterized by repetitive airway occlusions that are typically associated with peripheral airway obstructions. However, it would be an oversimplification to conclude that OSA is caused by peripheral obstructions. OSA is the result of a dynamic interplay between chemo- and mechanosensory reflexes, neuromodulation, behavioral state and the differential activation of the central respiratory network and its motor outputs. This interplay has numerous neuronal and cardiovascular consequences that are initially adaptive but in the long-term become major contributors to morbidity and mortality. Not only OSA, but also central apneas (CA) have multiple, and partly overlapping mechanisms. In OSA and CA the underlying mechanisms are neither "exclusively peripheral" nor "exclusively central" in origin. This review discusses the complex interplay of peripheral and central nervous components that characterizes the cessation of breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Nicholas CL, Jordan AS, Heckel L, Worsnop C, Bei B, Saboisky JP, Eckert DJ, White DP, Malhotra A, Trinder J. Discharge patterns of human tensor palatini motor units during sleep onset. Sleep 2012; 35:699-707. [PMID: 22547896 PMCID: PMC3321429 DOI: 10.5665/sleep.1834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. DESIGN The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. SETTING Sleep laboratory. PARTICIPANTS Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. INTERVENTION Sleep onset. MEASUREMENTS AND RESULTS Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. CONCLUSIONS TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.
Collapse
Affiliation(s)
| | - Amy S. Jordan
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Leila Heckel
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Christopher Worsnop
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Bei Bei
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Julian P. Saboisky
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA
| | - Danny J. Eckert
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA
| | - David P. White
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA
| | - Atul Malhotra
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA
| | - John Trinder
- School of Psychological Science, University of Melbourne, Parkville, Australia
| |
Collapse
|
31
|
Daugherty M, Luo Q, Sokoloff AJ. Myosin heavy chain composition of the human genioglossus muscle. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:609-25. [PMID: 22337492 PMCID: PMC3816748 DOI: 10.1044/1092-4388(2011/10-0287)] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle contractile proteins is not known. PURPOSE The authors tested for conventional myosin heavy chain (MHC) MHCI, MHCIIA, MHCIIX, developmental MHCembryonic and MHCneonatal and unconventional MHCαcardiac, MHCextraocular, and MHCslow tonic in antero-superior (GG-A) and posterior (GG-P) adult human GG. METHOD SDS-PAGE, Western blot, and immunohistochemistry were used to describe MHC composition of GG-A and GG-P and the prevalence of muscle fiber MHC phenotypes in GG-A. RESULTS By SDS-PAGE, only conventional MHC are present with ranking from most to least prevalent MHCIIA > MHCI > MHCIIX in GG-A and MHCI > MHCIIA > MHCIIX in GG-P. By immunohistochemistry, many muscle fibers contain MHCI, MHCIIA, and MHCIIX, but few contain developmental or unconventional MHC. GG-A is composed of 5 phenotypes (MHCIIA > MHCI-IIX > MHCI > MHCI-IIA > MHCIIX). Phenotypes MHCI, MHCIIA, and MHCI-IIX account for 96% of muscle fibers. CONCLUSIONS Despite activation of GG during kinematically diverse behaviors and complex patterns of GG motor unit activity, the human GG is composed of conventional MHC isoforms and 3 primary MHC phenotypes.
Collapse
|
32
|
Colrain IM. Heightened Awareness in Insomnia. Sleep 2012; 35:451-2. [DOI: 10.5665/sleep.1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
33
|
Edwards BA, White DP. Control of the pharyngeal musculature during wakefulness and sleep: implications in normal controls and sleep apnea. Head Neck 2011; 33 Suppl 1:S37-45. [PMID: 21901775 DOI: 10.1002/hed.21841] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 11/12/2022] Open
Abstract
Respiration involves the complex coordination of several pump and upper airway/pharyngeal muscles. From a respiratory perspective, the major function of the pharyngeal muscles is to keep the airway patent allowing for airflow in and out of the lung with minimal work by the respiratory pump muscles. The activity of each of the pharyngeal muscles varies depending on its function, but many reduce their activity during sleep. In healthy individuals, these muscles can respond to respiratory stimuli during sleep to prevent airway collapse. However, in individuals with an anatomically small airway, the muscles cannot always compensate for the increased mechanical load. Thus a vulnerable situation in which the airway is prone to collapse may occur with the development of obstructive sleep apnea. This article describes the current understanding regarding the control of the pharyngeal musculature during wakefulness and sleep, as well as the implications for obstructive sleep apnea.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| | | |
Collapse
|
34
|
Bailey EF. Activities of human genioglossus motor units. Respir Physiol Neurobiol 2011; 179:14-22. [PMID: 21558022 DOI: 10.1016/j.resp.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/13/2023]
Abstract
Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: (a) motor unit type, (b) rate coding and recruitment, (c) motor unit activity patterns, and (d) a compartment based view of pharyngeal airway control.
Collapse
Affiliation(s)
- E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|
35
|
Nicholas CL, DPsych BB, Worsnop C, Malhotra A, Jordan AS, Saboisky JP, Chan JKM, Duckworth E, White DP, Trinder J. Motor Unit Recruitment in Human Genioglossus Muscle in Response to Hypercapnia. Sleep 2010. [DOI: 10.1093/sleep/33.5.1529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Nicholas CL, Bei B, Worsnop C, Malhotra A, Jordan AS, Saboisky JP, Chan JKM, Duckworth E, White DP, Trinder J. Motor unit recruitment in human genioglossus muscle in response to hypercapnia. Sleep 2010; 33:1529-1538. [PMID: 21102995 PMCID: PMC2954703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
STUDY OBJECTIVES single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. SETTING sleep research laboratory. PARTICIPANTS sixteen healthy men. MEASUREMENTS AND RESULTS each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P < 0.001). Neither units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). CONCLUSIONS increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.
Collapse
Affiliation(s)
| | - Bei Bei
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Christopher Worsnop
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Atul Malhotra
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Amy S. Jordan
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Julian P. Saboisky
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Julia K. M. Chan
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Ella Duckworth
- School of Psychological Science, University of Melbourne, Parkville, Australia
| | - David P. White
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - John Trinder
- School of Psychological Science, University of Melbourne, Parkville, Australia
| |
Collapse
|
37
|
Saboisky JP, Jordan AS, Eckert DJ, White DP, Trinder JA, Nicholas CL, Gautam S, Malhotra A. Recruitment and rate-coding strategies of the human genioglossus muscle. J Appl Physiol (1985) 2010; 109:1939-49. [PMID: 20947713 DOI: 10.1152/japplphysiol.00812.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Single motor unit (SMU) analysis provides a means to examine the motor control of a muscle. SMUs in the genioglossus show considerable complexity, with several different firing patterns. Two of the primary stimuli that contribute to genioglossal activation are carbon dioxide (CO(2)) and negative pressure, which act through chemoreceptor and mechanoreceptor activation, respectively. We sought to determine how these stimuli affect the behavior of genioglossus SMUs. We quantified genioglossus SMU discharge activity during periods of quiet breathing, elevated CO(2) (facilitation), and continuous positive airway pressure (CPAP) administration (inhibition). CPAP was applied in 2-cmH(2)O increments until 10 cmH(2)O during hypercapnia. Five hundred ninety-one periods (each ∼ 3 breaths) of genioglossus SMU data were recorded using wire electrodes(n = 96 units) from 15 awake, supine subjects. Overall hypercapnic stimulation increased the discharge rate of genioglossus units (20.9 ± 1.0 vs. 22.7 ± 0.9 Hz). Inspiratory units were activated ∼ 13% earlier in the inspiratory cycle, and the units fired for a longer duration (80.6 ± 5.1 vs. 105.3 ± 4.2% inspiratory time; P < 0.05). Compared with baseline, an additional 32% of distinguishable SMUs within the selective electrode recording area were recruited with hypercapnia. CPAP led to progressive SMU inhibition; at ∼ 6 cmH(2)O, there were similar numbers of SMUs active compared with baseline, with peak frequencies of inspiratory units close to baseline, despite elevated CO(2) levels. At 10 cmH(2)O, the number of units was 36% less than baseline. Genioglossus inspiratory phasic SMUs respond to hypercapnic stimulation with changes in recruitment and rate coding. The SMUs respond to CPAP with derecruitment as a homogeneous population, and inspiratory phasic units show slower discharge rates. Understanding upper airway muscle recruitment/derecruitment may yield therapeutic targets for maintenance of pharyngeal patency.
Collapse
Affiliation(s)
- Julian P Saboisky
- Division of Sleep Medicine, Sleep Disorders Program, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|