1
|
Halonen R, Kuula L, Selin M, Suutari A, Antila M, Pesonen AK. REM Sleep Preserves Affective Response to Social Stress-Experimental Study. eNeuro 2024; 11:ENEURO.0453-23.2024. [PMID: 38802242 DOI: 10.1523/eneuro.0453-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Sleep's contribution to affective regulation is insufficiently understood. Previous human research has focused on memorizing or rating affective pictures and less on physiological affective responsivity. This may result in overlapping definitions of affective and declarative memories and inconsistent deductions for how rapid eye movement sleep (REMS) and slow-wave sleep (SWS) are involved. Literature associates REMS theta (4-8 Hz) activity with emotional memory processing, but its contribution to social stress habituation is unknown. Applying selective sleep stage suppression and oscillatory analyses, we investigated how sleep modulated affective adaptation toward social stress and retention of neutral declarative memories. Native Finnish participants (N = 29; age, M = 25.8 years) were allocated to REMS or SWS suppression conditions. We measured physiological (skin conductance response, SCR) and subjective stress response and declarative memory retrieval thrice: before laboratory night, the next morning, and after 3 d. Linear mixed models were applied to test the effects of condition and sleep parameters on emotional responsivity and memory retrieval. Greater overnight increase in SCR toward the stressor emerged after suppressed SWS (intact REMS) relative to suppressed REMS (20.1% vs 6.1%; p = 0.016). The overnight SCR increase was positively associated with accumulated REMS theta energy irrespective of the condition (r = 0.601; p = 0.002). Subjectively rated affective response and declarative memory recall were comparable between the conditions. The contributions of REMS and SWS to habituation of social stress are distinct. REMS theta activity proposedly facilitates the consolidation of autonomic affective responses. Declarative memory consolidation may not have greater dependence on intact SWS relative to intact REMS.
Collapse
Affiliation(s)
- Risto Halonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Liisa Kuula
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Maikki Selin
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Alma Suutari
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Minea Antila
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
2
|
Hunt C, Park J, Bomyea J, Colvonen PJ. Sleep efficiency predicts improvements in fear extinction and PTSD symptoms during prolonged exposure for veterans with comorbid insomnia. Psychiatry Res 2023; 324:115216. [PMID: 37099850 PMCID: PMC10395069 DOI: 10.1016/j.psychres.2023.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Prolonged exposure (PE) is an evidenced-based psychotherapy for PTSD, but many Veterans fail to achieve a clinically meaningful response. Sleep issues are prevalent in Veterans and may interfere with PE by disrupting the learning and consolidation of fear extinction memories during PE exposures. Here, we examined whether changes in fear extinction across imaginal exposures and PTSD symptoms during PE were predicted by diary-assessed levels of nightly sleep efficiency (SE; i.e., percent of time in bed spent sleeping), which may indirectly index sleep fragmentation and sleep-facilitated memory processes. Participants were Veterans with PTSD and comorbid insomnia (N = 40) participating in a clinical trial of cognitive-behavioral therapy for insomnia plus PE. SE was measured via nightly sleep diaries, fear extinction was operationalized as a reduction in peak distress between weekly imaginal exposures, and PTSD symptoms were assessed bi-weekly. Cross-lagged panel models revealed that higher sleep efficiency during the week predicted lower peak distress at the subsequent imaginal exposure and lower PTSD symptoms at the subsequent assessment, whereas PTSD symptoms and peak distress did not predict subsequent sleep efficiency. Efficient sleep may facilitate fear extinction and PTSD reduction during PE. Targeting sleep efficiency could improve PE effectiveness for Veterans with comorbid insomnia.
Collapse
Affiliation(s)
- Christopher Hunt
- VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America.
| | - Jane Park
- VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| | - Jessica Bomyea
- VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| | - Peter J Colvonen
- VA San Diego Healthcare System, San Diego, CA, United States of America; Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
3
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
4
|
Golkashani HA, Ghorbani S, Leong RLF, Ong JL, Chee MWL. Advantage conferred by overnight sleep on schema-related memory may last only a day. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad019. [PMID: 37193282 PMCID: PMC10155747 DOI: 10.1093/sleepadvances/zpad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Indexed: 05/18/2023]
Abstract
Study Objectives Sleep contributes to declarative memory consolidation. Independently, schemas benefit memory. Here we investigated how sleep compared with active wake benefits schema consolidation 12 and 24 hours after initial learning. Methods Fifty-three adolescents (age: 15-19 years) randomly assigned into sleep and active wake groups participated in a schema-learning protocol based on transitive inference (i.e. If B > C and C > D then B > D). Participants were tested immediately after learning and following 12-, and 24-hour intervals of wake or sleep for both the adjacent (e.g. B-C, C-D; relational memory) and inference pairs: (e.g.: B-D, B-E, and C-E). Memory performance following the respective 12- and 24-hour intervals were analyzed using a mixed ANOVA with schema (schema, no-schema) as the within-participant factor, and condition (sleep, wake) as the between-participant factor. Results Twelve hours after learning, there were significant main effects of condition (sleep, wake) and schema, as well as a significant interaction, whereby schema-related memory was significantly better in the sleep condition compared to wake. Higher sleep spindle density was most consistently associated with greater overnight schema-related memory benefit. After 24 hours, the memory advantage of initial sleep was diminished. Conclusions Overnight sleep preferentially benefits schema-related memory consolidation following initial learning compared with active wake, but this advantage may be eroded after a subsequent night of sleep. This is possibly due to delayed consolidation that might occur during subsequent sleep opportunities in the wake group. Clinical Trial Information Name: Investigating Preferred Nap Schedules for Adolescents (NFS5) URL: https://clinicaltrials.gov/ct2/show/NCT04044885. Registration: NCT04044885.
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
6
|
Siegel JM. Sleep function: an evolutionary perspective. Lancet Neurol 2022; 21:937-946. [PMID: 36115365 PMCID: PMC9670796 DOI: 10.1016/s1474-4422(22)00210-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies in industrial societies indicate that 7 h of sleep per night in people aged 18 years or older is optimum, with higher and lower amounts of sleep predicting a shorter lifespan. Humans living a hunter-gatherer lifestyle (eg, tribal groups) sleep for 6-8 h per night, with the longest sleep durations in winter. The prevalence of insomnia in hunter-gatherer populations is low (around 2%) compared with the prevalence of insomnia in industrial societies (around 10-30%). Sleep deprivation studies, which are done to gain insights into sleep function, are often confounded by the effects of stress. Consideration of the duration of spontaneous daily sleep across species of mammals, which ranges from 2 h to 20 h, can provide important insights into sleep function without the stress of deprivation. Sleep duration is not related to brain size or cognitive ability. Rather, sleep duration across species is associated with their ecological niche and feeding requirements, indicating a role for wake-sleep balance in food acquisition and energy conservation. Brain temperature drops from waking levels during non-rapid eye movement (non-REM) sleep and rises during REM sleep. Average daily REM sleep time of homeotherm orders is negatively correlated with average body and brain temperature, with the largest amount of REM sleep in egg laying (monotreme) mammals, moderate amounts in pouched (marsupial) mammals, lower amounts in placental mammals, and the lowest amounts in birds. REM sleep might, therefore, have a key role in the regulation of temperature and metabolism of the brain during sleep and in the facilitation of alert awakening.
Collapse
Affiliation(s)
- Jerome M Siegel
- Department of Psychiatry and Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Leong RLF, Lo JC, Chee MWL. Systematic review and meta-analyses on the effects of afternoon napping on cognition. Sleep Med Rev 2022; 65:101666. [PMID: 36041284 DOI: 10.1016/j.smrv.2022.101666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 10/15/2022]
Abstract
Naps are increasingly considered a means to boost cognitive performance. We quantified the cognitive effects of napping in 60 samples from 54 studies. 52 samples evaluated memory. We first evaluated effect sizes for all tests together, before separately assessing their effects on memory, vigilance, speed of processing and executive function. We next examined whether nap effects were moderated by study features of age, nap length, nap start time, habituality and prior sleep restriction. Naps showed significant benefits for the total aggregate of cognitive tests (Cohen's d = 0.379, CI95 = 0.296-0.462). Significant domain specific effects were present for declarative (Cohen's d = 0.376, CI95 = 0.269-0.482) and procedural memory (Cohen's d = 0.494, CI95 = 0.301-0.686), vigilance (Cohen's d = 0.610, CI95 = 0.291-0.929) and speed of processing (Cohen's d = 0.211, CI95 = 0.052-0.369). There were no significant moderation effects of any of the study features. Nap effects were of comparable magnitude across subgroups of each of the 5 moderators (Q values = 0.009 to 8.572, p values > 0.116). Afternoon naps have a small to medium benefit over multiple cognitive tests. These effects transcend age, nap duration and tentatively, habituality and prior nocturnal sleep.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - June C Lo
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
McConnell BV, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Sillau SH, Pulver RL, Bettcher BM. The Rise and Fall of Slow Wave Tides: Vacillations in Coupled Slow Wave/Spindle Pairing Shift the Composition of Slow Wave Activity in Accordance With Depth of Sleep. Front Neurosci 2022; 16:915934. [PMID: 35812239 PMCID: PMC9260314 DOI: 10.3389/fnins.2022.915934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Slow wave activity (SWA) during sleep is associated with synaptic regulation and memory processing functions. Each cycle of non-rapid-eye-movement (NREM) sleep demonstrates a waxing and waning amount of SWA during the transitions between stages N2 and N3 sleep, and the deeper N3 sleep is associated with an increased density of SWA. Further, SWA is an amalgam of different types of slow waves, each identifiable by their temporal coupling to spindle subtypes with distinct physiological features. The objectives of this study were to better understand the neurobiological properties that distinguish different slow wave and spindle subtypes, and to examine the composition of SWA across cycles of NREM sleep. We further sought to explore changes in the composition of NREM cycles that occur among aging adults. To address these goals, we analyzed subsets of data from two well-characterized cohorts of healthy adults: (1) The DREAMS Subjects Database (n = 20), and (2) The Cleveland Family Study (n = 60). Our analyses indicate that slow wave/spindle coupled events can be characterized as frontal vs. central in their relative distribution between electroencephalography (EEG) channels. The frontal predominant slow waves are identifiable by their coupling to late-fast spindles and occur more frequently during stage N3 sleep. Conversely, the central-associated slow waves are identified by coupling to early-fast spindles and favor occurrence during stage N2 sleep. Together, both types of slow wave/spindle coupled events form the composite of SWA, and their relative contribution to the SWA rises and falls across cycles of NREM sleep in accordance with depth of sleep. Exploratory analyses indicated that older adults produce a different composition of SWA, with a shift toward the N3, frontal subtype, which becomes increasingly predominant during cycles of NREM sleep. Overall, these data demonstrate that subtypes of slow wave/spindle events have distinct cortical propagation patterns and differ in their distribution across lighter vs. deeper NREM sleep. Future efforts to understand how slow wave sleep and slow wave/spindle coupling impact memory performance and neurological disease may benefit from examining the composition of SWA to avoid potential confounds that may occur when comparing dissimilar neurophysiological events.
Collapse
Affiliation(s)
- Brice V. McConnell
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
- *Correspondence: Brice V. McConnell,
| | - Eugene Kronberg
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Lindsey M. Medenblik
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Vitaly O. Kheyfets
- Pediatric Critical Care Medicine, University of Colorado, Denver, Denver, CO, United States
| | - Alberto R. Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefan H. Sillau
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Rachelle L. Pulver
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado, Denver, Denver, CO, United States
| |
Collapse
|
9
|
Aghayan Golkashani H, Leong RLF, Ghorbani S, Ong JL, Fernández G, Chee MWL. A sleep schedule incorporating naps benefits the transformation of hierarchical knowledge. Sleep 2022; 45:6516991. [PMID: 35090173 PMCID: PMC8996033 DOI: 10.1093/sleep/zsac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Study Objectives
The learning brain establishes schemas (knowledge structures) that benefit subsequent learning. We investigated how sleep and having a schema might benefit initial learning followed by rearranged and expanded memoranda. We concurrently examined the contributions of sleep spindles and slow-wave sleep to learning outcomes.
Methods
Fifty-three adolescents were randomly assigned to an 8 h Nap schedule (6.5 h nocturnal sleep with a 90-minute daytime nap) or an 8 h No-Nap, nocturnal-only sleep schedule. The study spanned 14 nights, simulating successive school weeks. We utilized a transitive inference task involving hierarchically ordered faces. Initial learning to set up the schema was followed by rearrangement of the hierarchy (accommodation) and hierarchy expansion (assimilation). The expanded sequence was restudied. Recall of hierarchical knowledge was tested after initial learning and at multiple points for all subsequent phases. As a control, both groups underwent a No-schema condition where the hierarchy was introduced and modified without opportunity to set up a schema. Electroencephalography accompanied the multiple sleep opportunities.
Results
There were main effects of Nap schedule and Schema condition evidenced by superior recall of initial learning, reordered and expanded memoranda. Improved recall was consistently associated with higher fast spindle density but not slow-wave measures. This was true for both nocturnal sleep and daytime naps.
Conclusion
A sleep schedule incorporating regular nap opportunities compared to one that only had nocturnal sleep benefited building of robust and flexible schemas, facilitating recall of the subsequently rearranged and expanded structured knowledge. These benefits appear to be strongly associated with fast spindles.
Clinical Trial registration
NCT04044885 (https://clinicaltrials.gov/ct2/show/NCT04044885).
Collapse
Affiliation(s)
- Hosein Aghayan Golkashani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shohreh Ghorbani
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Richards A, Inslicht SS, Yack LM, Metzler TJ, Russell Huie J, Straus LD, Dukes C, Hubachek SQ, Felmingham KL, Mathalon DH, Woodward SH, Neylan TC. The relationship of fear-potentiated startle and polysomnography-measured sleep in trauma-exposed men and women with and without PTSD: testing REM sleep effects and exploring the roles of an integrative measure of sleep, PTSD symptoms, and biological sex. Sleep 2022; 45:zsab271. [PMID: 34792165 DOI: 10.1093/sleep/zsab271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Published research indicates that sleep is involved in emotional information processing. Using a fear-potentiated startle (FPS) and nap sleep protocol, we examined the relationship of emotional learning with REM sleep (REMS) in trauma-exposed participants. We also explored the roles of posttraumatic stress disorder (PTSD) symptoms, biological sex, and an integrative measure of polysomnography-measured (PSG) sleep in the learning-sleep relationship. METHODS After an adaptation nap, participants (N = 46) completed two more visits (counterbalanced): a stress-condition visit, which included FPS conditioning procedures prior to a nap and assessment of learning retention and fear extinction training after the nap, and a control visit, which included a nap opportunity without stressful procedures. FPS conditioning included a "fear" visual stimulus paired with an air blast to the neck and a "safety" visual stimulus never paired with an air blast. Retention and extinction involved presentation of the visual stimuli without the air blast. Primary analyses examined the relationship between FPS responses pre- and post-sleep with stress-condition REMS duration, controlling for control-nap REMS duration. RESULTS Higher safety learning predicted increased REMS and increased REMS predicted more rapid extinction learning. Similar relationships were observed with an integrative PSG sleep measure. They also showed unexpected effects of PTSD symptoms on learning and showed biological sex effects on learning-sleep relationships. CONCLUSIONS Findings support evidence of a relationship between adaptive emotional learning and REMS. They underscore the importance of examining sex effects in sleep-learning relationships. They introduce an integrative PSG sleep measure with potential relevance to studies of sleep and subjective and biological outcomes.
Collapse
Affiliation(s)
- Anne Richards
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Sabra S Inslicht
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Leslie M Yack
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Thomas J Metzler
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - J Russell Huie
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Laura D Straus
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Cassandra Dukes
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | | | | | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| | - Steven H Woodward
- National Center for PTSD and VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center (SFVAMC), San Francisco, CA, USA
| |
Collapse
|
11
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Spontaneous slow oscillation - slow spindle features predict induced overnight memory retention. Sleep 2021; 44:6277833. [PMID: 34003291 PMCID: PMC8503833 DOI: 10.1093/sleep/zsab127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Synchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance. Methods Twenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated. Results Stimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy. Conclusions Findings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.,Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| |
Collapse
|