1
|
Whitehead K. Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn. Dev Cogn Neurosci 2025; 71:101487. [PMID: 39675060 PMCID: PMC11699341 DOI: 10.1016/j.dcn.2024.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
In older children and adults, cognition builds upon waking sensory experience which is consolidated during sleep. In the fetus and newborn, sensory input is instead largely experienced during sleep. The nature of these sensory inputs differs within sleep, between active and quiet sleep, as well as versus wakefulness. Here, sleep-wake organisation in the fetus and newborn is reviewed, and then its interaction with sensory inputs discussed with a focus on somatosensory and auditory modalities. Next, these ideas are applied to how neurological insults affect early development, using fetal growth restriction as a test case. Finally, the argument is made that taking account of sleep-wake state during perinatal functional neuroimaging can better index sensorimotor, language, and cognitive brain activities, potentially improving its diagnostic and prognostic value. To sum up, sensory and sleep-wake functions go hand in hand during early human development. Perturbation of these twinned functions by neurological insults may mediate later neurodevelopmental deficits. Perinatal neuroimaging has the potential to track these trajectories, feasibly identifying opportunities to therapeutically intervene.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Research Division of Digital Health and Applied Technology Assessment (DHATA), Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Rd, London SE1 8WA, UK.
| |
Collapse
|
2
|
Gurbani N, Ehsan Z, Boh M, Schuler CL, Simakajornboon N. Comparison of high flow nasal cannula therapy to nasal oxygen as a treatment for obstructive sleep apnea in infants. Pediatr Pulmonol 2024; 59:2635-2640. [PMID: 38837889 DOI: 10.1002/ppul.27109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) in infants is treated with low flow oxygen via nasal cannula (NC), CPAP (continous positive airway pressure), or surgery. Literature supports the use of high flow NC (HFNC) in children in the outpatient setting, however there is limited data on the use of HFNC in infants. OBJECTIVE The purpose of this study was to compare HFNC and low-flow oxygen as treatments for OSA in infants. METHODS A prospective pilot study was performed at two institutions. Infants with primarily OSA underwent a 3-4 h sleep study with HFNC titration at 6-14 lpm for OSA, followed by clinical polysomnography (PSG) for oxygen titration (1/8-1 lpm). Infants with primarily central apnea were excluded. RESULTS Nine infants were enrolled, with a mean age of 1.3 ± 1.7 months. Average apnea hypopnea index (AHI), average obstructive apnea hypopnea index (OAHI) and average central apnea index during the diagnostic PSG was 17.2 ± 7/h, 13.4 ± 5.4/h and 3.7 ± 4.8/h respectively. OSA improved in 44.4% of subjects with HFNC; the mean AHI and OAHI decreased from 15.6 ± 5.65/h and 12.8 ± 4.4/h on diagnostic PSG to 5.12 ± 2.5/h and 4.25 ± 2.5/h on titration PSG. OSA improved universally with low flow oxygen; the mean AHI decreased from 17.2 ± 7/h on diagnostic PSG to 4.44 ± 3.6/h on titration PSG. CONCLUSION HFNC reduced OSA in some infants, though low flow oxygen reduced OSA in all subjects. Respiratory instability (high loop gain) in infants may explain why infants responded to low flow oxygen. More studies are needed to determine if HFNC is beneficial in selected groups of infants with OSA.
Collapse
Affiliation(s)
- Neepa Gurbani
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zarmina Ehsan
- Division of Pulmonary and Sleep Medicine, Children's Mercy- Kansas City, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Melodie Boh
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christine L Schuler
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hospital Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Narong Simakajornboon
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Bergeron S, Champoux-Ouellet É, Samson N, Doyon M, Geoffroy M, Farkouh A, Bertelle V, Massé É, Cloutier S, Praud JP. Effects of vanilla odor on hypoxia-related periodic breathing in premature newborns: A pilot study. Arch Pediatr 2024; 31:369-373. [PMID: 38871544 DOI: 10.1016/j.arcped.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/24/2024] [Accepted: 03/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Periodic breathing (PB)-related intermittent hypoxia can have long-lasting deleterious consequences in preterm infants. Olfactory stimulation using vanilla odor is beneficial for apnea of prematurity in the first postnatal days/weeks. We aimed to determine for the first time whether vanilla odor can also decrease PB-related intermittent hypoxia. METHOD This pilot study was a balanced crossover clinical trial including 27 premature infants born between 30 and 33+6 weeks of gestation. We performed 12-h recordings on two nights separated by a 24-h period. All infants were randomly exposed to vanilla odor on the first or second study night. The primary outcome was the desaturation index, defined as the number per hour of pulse oximetry (SpO2) values <90 % for at least 5 s, together with a drop of ≥5 % from the preceding value. Univariate mixed linear models were used for the statistical analysis. RESULTS Overall, exposure to vanilla odor did not significantly decrease the desaturation index (52 ± 22 events/h [mean ± SD] on the intervention night vs. 57 ± 26, p = 0.2); furthermore, it did not significantly alter any secondary outcome. In a preliminary post hoc subgroup analysis, however, the effect of vanilla odor was statistically significant in infants with a desaturation index of ≥70/h (from 86 ± 12 to 65 ± 23, p = 0.04). CONCLUSION In this pilot study, vanilla odor overall did not decrease PB-related intermittent hypoxia in infants born at 30-33+6 weeks of gestation, which is when they are close to term. Preliminary results suggesting a beneficial effect in infants with the highest desaturation index, however, justify further studies in the presence of PB-related intermittent hypoxia as well as in infants born more prematurely.
Collapse
Affiliation(s)
- Simon Bergeron
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Élissa Champoux-Ouellet
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Nathalie Samson
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Myriam Doyon
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Mario Geoffroy
- Department of Respiratory Therapy, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Amar Farkouh
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Valérie Bertelle
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Édith Massé
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada
| | - Sylvie Cloutier
- Department of Pharmacy, University of Sherbrooke Hospital Research Center, J1H 5N4 QC, Canada
| | - Jean-Paul Praud
- Department of Pediatrics, Faculty of Medecine and Health Sciences, Université de Sherbrooke, J1H 5N4 QC, Canada.
| |
Collapse
|
4
|
Yamashiro SM, Iyer NP. Infant periodic breathing and apneic threshold. Physiol Rep 2024; 12:e15915. [PMID: 38243332 PMCID: PMC10799198 DOI: 10.14814/phy2.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024] Open
Abstract
A mathematical model was proposed to predict the role played by apneic threshold in periodic breathing in preterm infants. Prior models have mainly applied linear control theory which predicted instability but could not explain sustained periodic breathing. Apneic threshold to CO2 which has been postulated to play a major role in infant periodic breathing is a nonlinear effect and cannot be described by linear theory. Another previously unexplored nonlinear factor affecting instability is brain vascular volume change with CO2 which affects time delay to chemoreceptors. The current model explored the influences of apneic threshold, central and peripheral chemoreceptor gains, cardiac output, lung volume, and circulatory time delay on periodic breathing. Apneic threshold was found to play a major role in ventilatory responses to spontaneous sighs. Sighs led to apneic pauses followed by periods of periodic breathing with peripheral chemoreceptor CO2 gain, cardiac output, and lung volume were at reported normal levels. Apneic threshold when exceeded was observed to cause an asymmetry in the periodic breathing cycling and an increased periodic breathing frequency. Sighs in infants occur frequently enough to lead to repeated stimulation within the epoch duration of periodic breathing for a single sigh. Multiple sighs may then play a major role in promoting continuous periodic breathing in infants. Peripheral chemoreceptor gain estimated using endogenous CO2 led to validated predicted periodic breathing cycle duration as a function of age. Brain vascular volume increase with CO2 contributes to periodic breathing in very young (1-2 day old) preterm infants.
Collapse
Affiliation(s)
- Stanley M. Yamashiro
- Biomedical Engineering DepartmentUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Narayan P. Iyer
- Fetal and Neonatal Institute, Div of Neonatology, CHLA Dept of Pediatrics, Keck School of MedicineLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Ventilatory control instability as a predictor of persistent periodic breathing in preterm infants. Pediatr Res 2022; 92:513-519. [PMID: 34716421 PMCID: PMC8555736 DOI: 10.1038/s41390-021-01816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Periodic breathing (PB) is common in preterm infants. We aimed to characterize the contribution of ventilatory control instability to the presence and persistence of PB longitudinally. METHODS Infants born between 28 and 32 weeks of gestation were studied using daytime polysomnography at: 32-36 weeks postmenstrual age (PMA) (N = 32), 36-40 weeks PMA (N = 20), 3 months corrected age (CA) (N = 18) and 6 months CA (N = 19). Loop gain, a measure of sensitivity of the ventilatory control system, was estimated by fitting a mathematical model to ventilatory patterns associated with spontaneous sighs. RESULTS The time spent in PB decreased from 32-36 weeks PMA to 6 months CA (P = 0.005). Across all studies, studies with PB (N = 62) were associated with higher loop gain compared to those without PB (N = 23) (estimated marginal mean ± SEM: 0.445 ± 0.01 vs 0.388 ± 0.02; P = 0.020). A threshold of loop gain >0.415 (measured at 32-36 weeks PMA) provided a sensitivity of 86% and a specificity of 75% to detect the presence of PB at 6 months CA. CONCLUSIONS The course of PB in preterm infants is related to changes in loop gain. Higher loop gain at 32-36 weeks PMA was associated with a greater risk of persistent PB at 6 months CA. IMPACT The developmental trajectory of periodic breathing and its relationship to ventilatory control instability is currently unclear. Unstable ventilatory control is a determinant of periodic breathing in preterm infants up to 6 months corrected age. Infants who display greater ventilatory control instability at 32-36 weeks postmenstrual age may be at increased risk of persistent periodic breathing at 6 months corrected age. Assessment of ventilatory control stability may assist in the early identification of infants at risk of persistent periodic breathing and its potential adverse effects.
Collapse
|
6
|
Mammel D, Kemp J. Prematurity, the diagnosis of bronchopulmonary dysplasia, and maturation of ventilatory control. Pediatr Pulmonol 2021; 56:3533-3545. [PMID: 34042316 DOI: 10.1002/ppul.25519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Infants born before 32 weeks gestational age and receiving respiratory support at 36 weeks postmenstrual age (PMA) are diagnosed with bronchopulmonary dysplasia (BPD). This label suggests that their need for supplemental oxygen (O2 ) is primarily due to acquired dysplasia of airways and airspaces, and that the supplemental O2 is treating residual parenchymal lung disease. However, emerging evidence suggests that immature ventilatory control may also contribute to the need for supplemental O2 at 36 weeks PMA. In all newborns, maturation of ventilatory control continues ex utero and is a plastic process. Among premature infants, supplemental O2 mitigates the hypoxemic effects of delayed maturation of ventilatory control, as well as reduces the duration and frequency of periodic breathing events. Nevertheless, prematurity is associated with altered and occasionally aberrant maturation of ventilatory control. Infants born prematurely, with or without a diagnosis of BPD, are more prone to long-lasting effects of dysfunctional ventilatory control. This review addresses normal and abnormal maturation of ventilatory control and suggests how aberrant maturation complicates assigning the diagnosis of BPD. Greater awareness of the interaction between parenchymal lung disease and delayed maturation of ventilatory control is essential to understanding why a given premature infant requires and is benefitting from supplemental O2 at 36 weeks PMA.
Collapse
Affiliation(s)
- Daniel Mammel
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| | - James Kemp
- Department of Pediatrics, Allergy and Pulmonary Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Duenas-Meza E, Escamilla-Gil MI, Bazurto-Zapata MA, Caparo E, Suarez Cuartas M, Rincón Martínez L, Pernett Buenaver L, Rojas Ortega A, Torres J, Restrepo-Gualteros S, Parra Buitrago A, Gonzalez-Garcia M. Intermittent Hypoxia and Respiratory Patterns During Sleep of Preterm Infants Aged 3 to 18 Months Residing at High Altitudes. Sleep 2021; 45:6354695. [PMID: 34409457 DOI: 10.1093/sleep/zsab208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/05/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES the aim of this study was to determine the impact of apneas on oxygen saturation and the presence of intermittent hypoxia, during sleep of preterm infants (PTIs) born at high altitudes and compare with full-term infants (FTIs) at the same altitude. METHODS PTIs and FTIs from 3 to 18 months were included. They were divided into three age groups: 3-4 months (Group 1); 6-7 months (Group 2) and 10-18 months (Group 3). Polysomnography parameters and oxygenation indices were evaluated. Intermittent hypoxia was defined as brief, repetitive cycles of decreased oxygen saturation. Kruskal-Wallis test for multiple comparisons, t-test or Mann-Whitney U test were used. RESULTS 127 PTI and 175 FTI were included. Total apnea-hypopnea index (AHI) was higher in PTI that FTI in all age groups (Group 1: 33.5/h vs. 12.8/h, p=0.042; Group 2: 27.0/h vs. 7.4/h, p<0.001 and Group 3: 11.6/h vs. 3.1/h, p<0.001). In Group 3, central-AHI (8.0/h vs. 2.3/h, p<0.001) and obstructive-AHI (1.8/h vs. 0.6/h, p<0.008) were higher in PTI than FTI. T90 (7.0% vs. 0.5, p<0.001), oxygen desaturation index (39.8/h vs. 11.3, p<0.001) were higher in PTI than FTI, nadir SpO2 (70.0% vs. 80.0, p<0.001) was lower in PTI . CONCLUSION At high altitude, compared to FTI, PTI have a higher rate of respiratory events, greater desaturation and a delayed resolution of these conditions, suggesting the persistence of intermittent hypoxia during the first 18 months of life. This indicates the need for follow-up of these infants for timely diagnosis and treatment of respiratory disturbances during sleep.
Collapse
Affiliation(s)
- Elida Duenas-Meza
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | | | | | - Miguel Suarez Cuartas
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | - Lisbeth Pernett Buenaver
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | | | | | | - Andrea Parra Buitrago
- Fundación Neumológica Colombiana.,Universidad de La Sabana.,Fundación Cardioinfantil-Instituto de Cardiología
| | | |
Collapse
|
8
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
9
|
Zuzarte I, Paydarfar D, Sternad D. Effect of spontaneous movement on respiration in preterm infants. Exp Physiol 2021; 106:1285-1302. [PMID: 33675125 PMCID: PMC8087648 DOI: 10.1113/ep089143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory centres in the brainstem that control respiration receive inputs from various sources, including proprioceptors in muscles and joints and suprapontine centres, which all affect limb movements. What is the effect of spontaneous movement on respiration in preterm infants? What is the main finding and its importance? Apnoeic events tend to be preceded by movements. These activity bursts can cause respiratory instability that leads to an apnoeic event. These findings show promise that infant movements might serve as potential predictors of life-threatening apnoeic episodes, but more research is required. ABSTRACT A common condition in preterm infants (<37 weeks' gestational age) is apnoea resulting from immaturity and instability of the respiratory system. As apnoeas are implicated in several acute and long-term complications, prediction of apnoeas may preempt their onset and subsequent complications. This study tests the hypothesis that infant movements are a predictive marker for apnoeic episodes and examines the relation between movement and respiration. Movement was detected using a wavelet algorithm applied to the photoplethysmographic signal. Respiratory activity was measured in nine infants using respiratory inductance plethysmography; in an additional eight infants, respiration and partial pressure of airway carbon dioxide ( P C O 2 ) were measured by a nasal cannula with side-stream capnometry. In the first cohort, the distribution of movements before and after the onset of 370 apnoeic events was compared. Results showed that apnoeic events were associated with longer movement duration occurring before apnoea onsets compared to after. In the second cohort, respiration was analysed in relation to movement, comparing standard deviation of inter-breath intervals (IBI) before and after apnoeas. Poincaré maps of the respiratory activity quantified variability of airway P C O 2 in phase space. Movement significantly increased the variability of IBI and P C O 2 . Moreover, destabilization of respiration was dependent on the duration of movement. These findings support that bodily movements of the infants precede respiratory instability. Further research is warranted to explore the predictive value of movement for life-threatening events, useful for clinical management and risk stratification.
Collapse
Affiliation(s)
- Ian Zuzarte
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - David Paydarfar
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Sciences and Engineering, University of Texas at Austin, Austin, TX, USA
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering & Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
10
|
Siriwardhana LS, Weichard A, Nixon GM, Davey MJ, Walter LM, Edwards BA, Horne RSC. Role of ventilatory control instability in children with sleep-disordered breathing. Respirology 2020; 25:1174-1182. [PMID: 32239710 DOI: 10.1111/resp.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE The contribution of non-anatomical factors, such as ventilatory control instability (i.e. LG), to the pathogenesis of obstructive SDB in children is unclear. Therefore, we aimed to identify the relationship between LG and severity of SDB, demographic, anthropometric and anatomical characteristics in a clinically representative cohort of children. METHODS Children (aged 3-18 years) with various severities of SDB (n = 110) and non-snoring controls (n = 36) were studied. Children were grouped according to their OAHI. Anthropometric and upper airway anatomical characteristics were measured. Spontaneous sighs were identified on polysomnography and LG, a measure of the sensitivity of the negative feedback loop that controls ventilation, was estimated by fitting a mathematical model of ventilatory control to the post-sigh ventilatory pattern. RESULTS There was no difference in LG between controls and any of the SDB severity groups. However, LG was significantly lower in children with larger tonsils (tonsil grade 4) compared with children with smaller tonsils (tonsil grade 1) (median LG (range): 0.25 (0.20-0.42) vs 0.32 (0.25-0.44); P = 0.009) and in children with a modified Mallampati score of class III/IV compared with class I (0.28 (0.24-0.33) vs 0.37 (0.27-0.44); P = 0.009). CONCLUSION A direct relationship was not found between the severity of paediatric SDB and LG. However, an altered ventilatory control sensitivity may contribute to SDB in a subgroup of children depending on their degree of anatomical compromise of the airway.
Collapse
Affiliation(s)
- Leon S Siriwardhana
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Aidan Weichard
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Gillian M Nixon
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Margot J Davey
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Lisa M Walter
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Bradley A Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology, Monash University, Melbourne, VIC, Australia.,School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Harman K, Weichard AJ, Davey MJ, Horne RS, Nixon GM, Edwards BA. Assessing ventilatory control stability in children with and without an elevated central apnoea index. Respirology 2019; 25:214-220. [DOI: 10.1111/resp.13606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Katherine Harman
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Aidan J. Weichard
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Margot J. Davey
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Rosemary S.C. Horne
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
| | - Gillian M. Nixon
- Department of PaediatricsMonash University Melbourne VIC Australia
- The Ritchie Centre, Hudson Institute of Medical Research Melbourne VIC Australia
- Melbourne Children's Sleep CentreMonash Children's Hospital Melbourne VIC Australia
| | - Bradley A. Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology and School of Psychological Sciences, Faculty of Medicine, Nursing and Health SciencesMonash University Melbourne VIC Australia
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash University Melbourne VIC Australia
| |
Collapse
|