1
|
Watanabe T, La Shu S, Rio-Espinola AD, Ferreira JR, Bando K, Lemmens M, Pande P, de Wolf C, Chen CL, Elke E, Rao GK, van den Hoorn T, Mouriès LP, Myers MB, Yasuda S. Evaluating teratoma formation risk of pluripotent stem cell-derived cell therapy products: a consensus recommendation from the Health and Environmental Sciences Institute's International Cell Therapy Committee. Cytotherapy 2025:S1465-3249(25)00684-X. [PMID: 40392167 DOI: 10.1016/j.jcyt.2025.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 05/22/2025]
Abstract
Human pluripotent stem cells (hPSCs) can differentiate into any cell of choice and hold significant promise in regenerative medicine and for treating diseases that currently lack adequate therapies. However, hPSCs are intrinsically tumorigenic and can form teratomas. Therefore, the presence of residual undifferentiated hPSCs must be rigorously assessed using sensitive methodologies to mitigate the potential tumorigenicity risks of hPSC-derived cell therapy products (CTPs). In this comprehensive review, we describe methods for detecting residual undifferentiated hPSCs and discuss the relative value of current in vitro assays versus conventional in vivo assays. We highlight that in vitro assays such as digital PCR detection of hPSC-specific RNA and the highly efficient culture assay, have superior detection sensitivity. Additionally, we outline important considerations for validating in vitro assays when applying them to assess each product. This article lays the groundwork for guiding internationally harmonized procedures for evaluating the potential teratoma formation risk of hPSC-derived CTPs and increasing confidence in the safety of these products.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | - Shin La Shu
- Frederick National Laboratories for Cancer Research, Maryland, USA
| | | | - Joana Rita Ferreira
- Safety Sciences, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kiyoko Bando
- Regenerative & Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Kobe, Japan
| | - Myriam Lemmens
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Parimal Pande
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | | | - Connie L Chen
- Health & Environmental Sciences Institute (HESI), Washington DC, USA
| | - Ericson Elke
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gautham K Rao
- Department of Translational Safety, Genentech Inc., South San Francisco, California, USA
| | | | | | - Meagan B Myers
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arizona, USA
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
2
|
Bahrani Fard MR, Chan J, Read AT, Li G, Cheng L, Safa BN, Siadat SM, Jhunjhunwala A, Grossniklaus HE, Emelianov SY, Stamer WD, Kuehn MH, Ethier CR. MAGNETICALLY STEERED CELL THERAPY FOR REDUCTION OF INTRAOCULAR PRESSURE AS A TREATMENT STRATEGY FOR OPEN-ANGLE GLAUCOMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.13.593917. [PMID: 38798683 PMCID: PMC11118342 DOI: 10.1101/2024.05.13.593917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.5 [3.1, 6.0] mmHg or 27% reduction in intraocular pressure (IOP) for nine months after a single dose of only 1500 magnetically-steered hAMSCs, explained by increased outflow through the conventional pathway and associated with an higher TM cellularity. iPSC-TM cells were also effective, but less so, showing only a 1.9 [0.4, 3.3] mmHg or 13% IOP reduction and increased risk of tumorigenicity. In both cases, injected cells remained detectable in the iridocorneal angle three weeks post-transplantation. Based on the locations of the delivered cells, the mechanism of IOP lowering is most likely paracrine signaling. We conclude that magnetically-steered hAMSC cell therapy has potential for long-term treatment of ocular hypertension in glaucoma. One Sentence Summary A novel magnetic cell therapy provided effective intraocular pressure reduction in a mouse model, motivating future translational studies.
Collapse
|
3
|
Hirayama M, Hatou S, Nomura M, Hokama R, Hirayama OI, Inagaki E, Aso K, Sayano T, Dohi H, Hanatani T, Takasu N, Okano H, Negishi K, Shimmura S. A first-in-human clinical study of an allogenic iPSC-derived corneal endothelial cell substitute transplantation for bullous keratopathy. Cell Rep Med 2025; 6:101847. [PMID: 39809262 PMCID: PMC11866429 DOI: 10.1016/j.xcrm.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
A first-in-human investigator-initiated clinical study of a corneal endothelial cell substitute (CLS001) derived from a clinical-grade induced pluripotent stem cell (iPSC) line shows improvement of visual acuity and corneal stromal edema, with no adverse events for up to 1 year after surgery for the treatment of bullous keratopathy. While preclinical tests, including multiple whole-genome analysis and tumorigenicity tests adhering to the Food and Drug Administration (FDA) draft guidelines, are negative, an additional whole-genome analysis conducted on transplanted CLS001 cells reveals a de novo in-frame deletion of exon22 in the EP300 gene. No adverse events related to the mutation are observed. Our study demonstrates the feasibility of using iPSC-derived cells to replace donor transplant for bullous keratopathy, while shedding light on risk management of gene mutation in cell products. Further follow-up is required for long-term analysis of clinical safety and efficacy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Cellusion Inc., Chuo-ku, Tokyo 103-0024, Japan
| | | | - Risa Hokama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan
| | - Osama Ibrahim Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kumi Aso
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan
| | - Tomoko Sayano
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Cellusion Inc., Chuo-ku, Tokyo 103-0024, Japan
| | - Hiromi Dohi
- CiRA Foundation, Sakyo-ku, Kyoto 606-8397, Japan
| | | | - Naoko Takasu
- CiRA Foundation, Sakyo-ku, Kyoto 606-8397, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku 160-8582, Tokyo, Japan; Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan.
| |
Collapse
|
4
|
Shimmura S, Inagaki E, Hirayama M, Hatou S. The Cornea: An Ideal Tissue for Regenerative Medicine. Keio J Med 2024; 73:1-7. [PMID: 38369325 DOI: 10.2302/kjm.2023-0001-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regenerative medicine is a highly anticipated field with hopes to provide cures for previously uncurable diseases such as spinal cord injuries and retinal blindness. Most regenerative medical products use either autologous or allogeneic stem cells, which may or may not be genetically modified. The introduction of induced-pluripotent stem cells (iPSCs) has fueled research in the field, and several iPSC-derived cells/tissues are currently undergoing clinical trials. The cornea is one of the pioneering areas of regenerative medicine, and already four cell therapy products are approved for clinical use in Japan. There is one other government-approved cell therapy product approved in Europe, but none are approved in the USA at present. The cornea is transparent and avascular, making it unique as a target for stem cell therapy. This review discusses the unique properties of the cornea and ongoing research in the field.
Collapse
Affiliation(s)
- Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Cellusion Inc., Tokyo, Japan
| |
Collapse
|
5
|
Ng XY, Peh GSL, Yam GHF, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci 2023; 24:12433. [PMID: 37569804 PMCID: PMC10418878 DOI: 10.3390/ijms241512433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal blindness, and the current conventional treatment option is corneal transplantation using a cadaveric donor cornea. However, there is a global shortage of suitable donor graft material, necessitating the exploration of novel therapeutic approaches. A stem cell-based regenerative medicine approach using induced pluripotent stem cells (iPSCs) offers a promising solution, as they possess self-renewal capabilities, can be derived from adult somatic cells, and can be differentiated into all cell types including corneal endothelial cells (CECs). This review discusses the progress and challenges in developing protocols to induce iPSCs into CECs, focusing on the different media formulations used to differentiate iPSCs to neural crest cells (NCCs) and subsequently to CECs, as well as the characterization methods and markers that define iPSC-derived CECs. The hurdles and solutions for the clinical application of iPSC-derived cell therapy are also addressed, including the establishment of protocols that adhere to good manufacturing practice (GMP) guidelines. The potential risks of genetic mutations in iPSC-derived CECs associated with long-term in vitro culture and the danger of potential tumorigenicity following transplantation are evaluated. In all, this review provides insights into the advancement and obstacles of using iPSC in the treatment of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, 6614, Pittsburgh, PA 15260, USA
| | - Hwee Goon Tay
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
6
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
In Vivo CaV3 Channel Inhibition Promotes Maturation of Glucose-Dependent Ca2+ Signaling in Human iPSC-Islets. Biomedicines 2023; 11:biomedicines11030807. [PMID: 36979793 PMCID: PMC10045717 DOI: 10.3390/biomedicines11030807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
CaV3 channels are ontogenetically downregulated with the maturation of certain electrically excitable cells, including pancreatic β cells. Abnormally exaggerated CaV3 channels drive the dedifferentiation of mature β cells. This led us to question whether excessive CaV3 channels, retained mistakenly in engineered human-induced pluripotent stem cell-derived islet (hiPSC-islet) cells, act as an obstacle to hiPSC-islet maturation. We addressed this question by using the anterior chamber of the eye (ACE) of immunodeficient mice as a site for recapitulation of in vivo hiPSC-islet maturation in combination with intravitreal drug infusion, intravital microimaging, measurements of cytoplasmic-free Ca2+ concentration ([Ca2+]i) and patch clamp analysis. We observed that the ACE is well suited for recapitulation, observation and intervention of hiPSC-islet maturation. Intriguingly, intraocular hiPSC-islet grafts, retrieved intact following intravitreal infusion of the CaV3 channel blocker NNC55-0396, exhibited decreased basal [Ca2+]i levels and increased glucose-stimulated [Ca2+]i responses. Insulin-expressing cells of these islet grafts indeed expressed the NNC55-0396 target CaV3 channels. Intraocular hiPSC-islets underwent satisfactory engraftment, vascularization and light scattering without being influenced by the intravitreally infused NNC55-0396. These data demonstrate that inhibiting CaV3 channels facilitates the maturation of glucose-activated Ca2+ signaling in hiPSC-islets, supporting the notion that excessive CaV3 channels as a developmental error impede the maturation of engineer ed hiPSC-islet insulin-expressing cells.
Collapse
|