1
|
Sokou R, Gounari EA, Tsantes AG, Piovani D, Bonovas S, Tsantes AE, Iacovidou N. Bridging the evidence-to-practice gap: Advancing neonatal blood transfusion. A narrative review of recent guidelines. Blood Rev 2025; 71:101282. [PMID: 40074612 DOI: 10.1016/j.blre.2025.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Neonates represent a distinct population within the context of transfusion medicine. Blood transfusions in neonates are vital interventions for multiple conditions, despite their inherent risks and potential complications. Differences in physiology and other transfusion risk factors unique to this group require careful adaptation of transfusion guidelines. This article seeks to offer a thorough overview of the current evidence-based practices for RBC administration in neonates. It covers the collection, processing and storage of RBCs and discusses the research underpinning the most recent transfusion guidelines. Furthermore, it emphasizes the challenges in establishing precise cut-off values for these conditions in both preterm and critically ill neonates and discusses indications for transfusion, thresholds, current guidelines, and potential complications. Finally, it highlights gaps in critical areas of transfusion related research and proposes future targets for research.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, Piraeus, Greece; Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece.
| | | | - Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Argirios E Tsantes
- Laboratory of Haematology and Blood Bank Unit, "Attiko" Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
2
|
Zhou L, McDonald CA, Yawno T, Razak A, Connelly K, Novak I, Miller SL, Jenkin G, Malhotra A. Feasibility and safety of autologous cord blood derived cell administration in extremely preterm infants: a single-centre, open-label, single-arm, phase I trial (CORD-SaFe study). EBioMedicine 2025; 111:105492. [PMID: 39674685 PMCID: PMC11731592 DOI: 10.1016/j.ebiom.2024.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Evidence from preclinical studies in small and large animal models has shown neuroprotective effects of intravenous administration of umbilical cord blood derived cells (UCBCs). This study aimed to evaluate the feasibility of umbilical cord blood (UCB) collection, extraction of UCBCs, and subsequent safety of intravenous autologous administration of UCBCs in extremely preterm infants (born <28 weeks gestation). METHODS A single-centre, open-label, single-arm, safety and feasibility clinical intervention trial was conducted at Monash Medical Centre and Monash Children's Hospital, Melbourne, Australia. Participants were extremely preterm infants born at less than 28 weeks completed gestation, and exclusions included major congenital malformation, maternal blood-borne virus infection, and severe brain injury on postnatal cranial ultrasound. UCB was collected at birth, and UCBCs were characterised (total nucleated cell count (TNC), mononuclear cell count (MNC), CD34+ cell count) and cryopreserved. Infants were reinfused with autologous UCBCs (25-50 million MNCs/kg) intravenously in the second postnatal week. Primary outcomes included feasibility: sufficient UCB volume (>7 mL) and UCBC numbers following processing (>25 × 106 TNCs/kg); and safety: absence of adverse events directly related to UCBC administration. FINDINGS Forty-four UCB collections were attempted and sufficient UCB volume/UCBC extraction was demonstrated in 37 (84.1%) infants. Good Manufacturing Practice (GMP) grade cells were obtained in 31/44 (70.4%) of infants. Median (IQR) TNCs and MNCs collected were 130 (67-207) x 106/kg and 60 (39-105) x 106/kg, respectively. 23 infants with median (IQR) gestation of 26 (24-27) weeks and birth weight of 761 (650-946) grams were administered cells at a median (IQR) dose of 42.3 (31.1-62.3) x 106 MNCs/kg). No serious adverse events were noted, and the infusions were well-tolerated. INTERPRETATION This phase-1 clinical trial has shown UCBC collection and reinfusion was feasible in approximately 70% of extremely preterm infants and was well tolerated without any serious adverse events. FUNDING Funding to support this study was obtained from National Health and Medical Research Council of Australia, Cerebral Palsy Alliance, National Stem Cell Foundation of Australia, and Lions Cord Blood Foundation.
Collapse
Affiliation(s)
- Lindsay Zhou
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Abdul Razak
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Kristyn Connelly
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Iona Novak
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| |
Collapse
|
3
|
Tran NT, Penny TR, Chan KY, Tang T, Papagianis PC, Sepehrizadeh T, Nekkanti L, Zahra VA, Pham Y, Yawno T, Nitsos I, Kelly SB, Thiel AM, de Veer M, Alahmari DM, Fahey MC, Jenkin G, Miller SL, Galinsky R, Polglase GR, McDonald CA. Early administration of umbilical cord blood cells following brief high tidal volume ventilation in preterm sheep: a cautionary tale. J Neuroinflammation 2024; 21:121. [PMID: 38720368 PMCID: PMC11077893 DOI: 10.1186/s12974-024-03053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.
Collapse
Affiliation(s)
- Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Kyra Yy Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Tanya Tang
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Paris C Papagianis
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Lakshmi Nekkanti
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Alison M Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Dhafer M Alahmari
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
- Department of Diagnostic Imaging, Kind Saud Medical City, Riyadh, Saudi Arabia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Zhuxiao R, Jiangxue H, Yongsheng L, Jingjun P, Shuo Y, Fang X, Qi Z, Shandan Z, Chuan N, Jie Y. Umbilical cord blood cell characteristics in very preterm neonates for autologous cell therapy of preterm-associated complications. BMC Pediatr 2024; 24:214. [PMID: 38528484 DOI: 10.1186/s12887-024-04678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND There are emerging clinical evidence for umbilical cord blood mononuclear cells (UCBMNCs) intervention to improve preterm complications. The first critical step in cell therapy is to obtain high-quality cells. This retrospective study aimed to investigate the quantity and quality of UCBMNCs from very preterm infants (VPIs) for the purpose of autologous cell therapy in prevention and treatment of preterm complications. METHODS Very preterm infants (VPIs) born in Guangdong Women and Children Hospital from January 1, 2017, to December 8, 2022, from whom cord blood was successfully collected and separated for public or private banking, were enrolled. The UCBMNCs characters from route cord blood tests performed in cord blood bank, impact of perinatal factors on UCBMNCs, the relationship between UCBMNCs characteristics and preterm outcomes, and the correlation of UCBMNCs characteristics and peripheral blood cells in VPIs were analyzed. RESULTS Totally, 89 VPIs underwent UCB collection and processing successfully. The median cell number post processing was 2.6 × 108. To infuse a dose of 5 × 107 cells/kg, only 3.4% of infants required a volume of more than 20 mL/kg, which exceeded the maximum safe volume limit for VPIs. However, when infusing 10 × 107 cells/kg, 25.8% of infants required a volume of more than 20 ml/kg volume. Antenatal glucocorticoids use and preeclampsia was associated with lower original UCBMNCs concentration. Both CD34+ hematopoietic stem cells (HSC) frequency and colony forming unit - granulocyte and macrophage (CFU-GM) number correlated negatively with gestational age (GA). UCBMNCs characters had no significant effect on preterm outcomes, whereas a significant positive correlation was observed between UCBMNCs concentration and total white blood cell, neutrophil, lymphocyte and PLT counts in peripheral blood. CONCLUSION UCBMNCs collected from VPIs was feasible for autologous cell therapy in improving preterm complications. Setting the infusion dose of 5 × 107 cells/kg guaranteed a safe infusion volume in more than 95% of the targeted infants. UCBMNCs characters did not affect preterm complications; however, the effect of UCBMNCs concentration on peripheral blood classification count should be considered when evaluating the immunomodulation of UCBMNCs transfusion.
Collapse
Affiliation(s)
- Ren Zhuxiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Han Jiangxue
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Li Yongsheng
- Guangdong Cord Blood Bank, Guangzhou, 511440, China
| | - Pei Jingjun
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China
| | - Yang Shuo
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China
| | - Zhang Qi
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China
| | - Zhang Shandan
- Department of Neonatology, The Maternal and Child Health Care Hospital of HuaDu District, GuangZhou City, Guangdong Medical University, Guangzhou, 510800, China
| | - Nie Chuan
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangdong Neonatal ICU Medical Quality Control CenterNational Key Clinical Specialty Construction Unit, Guangzhou, 511442, China.
- Department of Clinic Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, 511442, China.
| | - Yang Jie
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 511400, China.
| |
Collapse
|
5
|
Gargas J, Janowska J, Gebala P, Maksymiuk W, Sypecka J. Reactive Gliosis in Neonatal Disorders: Friend or Foe for Neuroregeneration? Cells 2024; 13:131. [PMID: 38247822 PMCID: PMC10813898 DOI: 10.3390/cells13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
A developing nervous system is particularly vulnerable to the influence of pathophysiological clues and injuries in the perinatal period. Astrocytes are among the first cells that react to insults against the nervous tissue, the presence of pathogens, misbalance of local tissue homeostasis, and a lack of oxygen and trophic support. Under this background, it remains uncertain if induced astrocyte activation, recognized as astrogliosis, is a friend or foe for progressing neonatal neurodevelopment. Likewise, the state of astrocyte reactivity is considered one of the key factors discriminating between either the initiation of endogenous reparative mechanisms compensating for aberrations in the structures and functions of nervous tissue or the triggering of neurodegeneration. The responses of activated cells are modulated by neighboring neural cells, which exhibit broad immunomodulatory and pro-regenerative properties by secreting a plethora of active compounds (including interleukins and chemokines, neurotrophins, reactive oxygen species, nitric oxide synthase and complement components), which are engaged in cell crosstalk in a paracrine manner. As the developing nervous system is extremely sensitive to the influence of signaling molecules, even subtle changes in the composition or concentration of the cellular secretome can have significant effects on the developing neonatal brain. Thus, modulating the activity of other types of cells and their interactions with overreactive astrocytes might be a promising strategy for controlling neonatal astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.G.); (J.J.)
| |
Collapse
|
6
|
Malhotra A, Thebaud B, Paton MCB, Fleiss B, Papagianis P, Baker E, Bennet L, Yawno T, Elwood N, Campbell B, Chand K, Zhou L, Penny T, Nguyen T, Pepe S, Gunn AJ, McDonald CA. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022). Pediatr Res 2023; 94:1631-1638. [PMID: 37380752 PMCID: PMC10624618 DOI: 10.1038/s41390-023-02707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.
Collapse
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Madison C B Paton
- Cerebral Palsy Alliance Research Institute; Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paris Papagianis
- Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Elizabeth Baker
- Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Laura Bennet
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ngaire Elwood
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Campbell
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kirat Chand
- Perinatal Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Salvatore Pepe
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Rao RB, Shiao ML, Ennis-Czerniak KM, Low WC. Nonhematopoietic Umbilical Cord Blood Stem Cell Administration Improves Long-term Neurodevelopment After Periventricular-Intraventricular Hemorrhage in Neonatal Rats. Cell Transplant 2023; 32:9636897231189301. [PMID: 37493283 PMCID: PMC10387682 DOI: 10.1177/09636897231189301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Periventricular-intraventricular hemorrhage (PIVH) is common in extremely low gestational age neonates (ELGAN) and leads to motor and behavioral impairments. Currently there is no effective treatment for PIVH. Whether human nonhematopoietic umbilical cord blood-derived stem cell (nh-UCBSC) administration reduces the severity of brain injury and improves long-term motor and behavioral function was tested in an ELGAN-equivalent neonatal rat model of PIVH. In a collagenase-induced unilateral PIVH on postnatal day (P) 2 model, rat pups received a single dose of nh-UCBSCs at a dose of 1 × 106 cells i.p. on P6 (PIVH + UCBSC group) or were left untreated (Untreated PIVH group). Motor deficit was determined using forelimb placement, edge-push, and elevated body swing tests at 2 months (N = 5-8). Behavior was evaluated using open field exploration and rearing tests at 4 months (N =10-12). Cavity volume and hemispheric volume loss on the PIVH side were determined at 7 months (N = 6-7). Outcomes were compared between the Untreated PIVH and PIVH + UCBSC groups and a Control group. Unilateral motor deficits were present in 60%-100% of rats in the Untreated PIVH group and 12.5% rats in the PIVH + UCBSC group (P = 0.02). Untreated PIVH group exhibited a higher number of quadrant crossings in open field exploration, indicating low emotionality and poor habituation, and had a cavitary lesion and hemispheric volume loss on the PIVH side. Performance in open field exploration correlated with cavity volume (r2 = 0.25; P < 0.05). Compared with the Untreated PIVH group, performance in open field exploration was better (P = 0.0025) and hemispheric volume loss was lower (19.9 ± 4.4% vs 6.1 ± 2.6%, P = 0.018) in the PIVH + UCBSC group. These results suggest that a single dose of nh-UCBSCs administered in the subacute period after PIVH reduces the severity of injury and improves neurodevelopment in neonatal rats.
Collapse
Affiliation(s)
- Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maple L. Shiao
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen M. Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|