1
|
Alfaro-Quinde C, Krstanovic KE, Vásquez PA, Kathrein KL. STOCHASTIC MODELING OF HEMATOPOIETIC STEM CELL DYNAMICS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635091. [PMID: 39974985 PMCID: PMC11838373 DOI: 10.1101/2025.01.27.635091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The study of hematopoietic stem cell (HSCs) maintenance and differentiation to supply the hematopoietic system presents unique challenges, given the complex regulation of the process and the difficulty in observing cellular interactions in the stem cell niche. Quantitative methods and tools have emerged as valuable mechanisms to address this issue; however, the stochasticity of HSCs presents significant challenges for mathematical modeling, especially when bridging the gap between theoretical models and experimental validation. In this work, we have built a flexible and user-friendly stochastic dynamical and spatial model for long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs) that captures experimentally observed cellular variability and heterogeneity. Our model implements the behavior of LT-HSCs and ST-HSCs and predicts their homeostatic dynamics. Furthermore, our model can be modified to explore various biological scenarios, such as stress-induced perturbations mediated by apoptosis, and successfully implement these conditions. Finally, the model incorporates spatial dynamics, simulating cell behavior in a 2D environment by combining Brownian motion with spatially graded parameters.
Collapse
Affiliation(s)
| | | | - Paula A. Vásquez
- Department of Mathematics, University of South Carolina, Columbia, SC
| | - Katie L. Kathrein
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| |
Collapse
|
2
|
Salah EY, Sontakke B, Hamoud AA, Emadifar H, Kumar A. A fractal-fractional order modeling approach to understanding stem cell-chemotherapy combinations for cancer. Sci Rep 2025; 15:3465. [PMID: 39870737 PMCID: PMC11772579 DOI: 10.1038/s41598-025-87308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The main objective of this work is to study the mathematical model that combines stem cell therapy and chemotherapy for cancer cells. We study the model using the fractal fractional derivative with the Mittag-Leffler kernel. In the analytical part, we study the existence of the solution and its uniqueness, which was studied based on the fixed point theory. The equilibrium points were also studied and discussed after stem cell therapy, and the approximate solutions for the given model were obtained using the Adam Bashford method, which depends on interpolation with Lagrange polynomials. Finally, the model was simulated using the Mathematica software, and through the figures, we found that the components of the model approach the equilibrium point, which indicates the stability of the model at the equilibrium point. Also, the result of the numerical simulation and graphic for the concentration of cells over time indicate the effects of the therapies on the decay rate of tumor cells and the growth rate of effector cells to modify the cancer patient's immune system. It is worth noting that we simulated all the model components with different fractional orders, confirming the effect of stem cell therapy and chemotherapy on the cells and the decay of cancer cells.
Collapse
Affiliation(s)
- Esam Y Salah
- Department of Mathematics, Pratishthan College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
- Department of Mathematics, Colegge of Educatiton, IBB University, IBB, Yemen
| | - Bhausaheb Sontakke
- Department of Mathematics, Pratishthan College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Ahmed A Hamoud
- Department of Mathematics, Taiz University, Taiz, 6803, Yemen
| | - Homan Emadifar
- Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
- Research Unit, Middle East University, Amman, 11831, Jordan.
| | - Atul Kumar
- Department of Mathematics, Dayalbagh Educational Institute, Agra, India
| |
Collapse
|
3
|
Stiehl T. Stem cell graft dose and composition could impact on the expansion of donor-derived clones after allogeneic hematopoietic stem cell transplantation - a virtual clinical trial. Front Immunol 2024; 15:1321336. [PMID: 39737169 PMCID: PMC11682905 DOI: 10.3389/fimmu.2024.1321336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/10/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones. In many cases the dominating clones carry mutations conferring a growth advantage and thus could undergo malignant transformation in the recipient. Since clonal hematopoiesis exists in a significant proportion of potential stem cell donors, a more detailed understanding of its role for stem cell transplantation is required. Methods We propose mechanistic computational models and perform virtual clinical trials to investigate clonal dynamics during and after allogenic hematopoietic stem cell transplantation. Different mechanisms of clonal expansion are considered, including mutation-related changes of stem cell proliferation and self-renewal, aberrant response of mutated cells to systemic signals, and self-sustaining chronic inflammation triggered by the mutated cells. Results Model simulations suggest that an aberrant response of mutated cells to systemic signals is sufficient to explain the frequently observed quick expansion of the mutated clone shortly after transplantation which is followed by a stabilization of the mutated cell number at a constant value. In contrary, a mutation-related increase of self-renewal or self-sustaining chronic inflammation lead to ongoing clonal expansion. Our virtual clinical trials suggest that a low number of transplanted stem cells per kg of body weight increases the transplantation-related expansion of donor-derived clones, whereas the transplanted progenitor dose or growth factor support after transplantation have no impact on clonal dynamics. Furthermore, in our simulations the change of the donors' variant allele frequencies in the year before stem cell donation is associated with the expansion of donor-derived clones in the recipient. Discussion This in silico study provides insights in the mechanisms leading to clonal expansion and identifies questions that could be addressed in future clinical trials.
Collapse
Affiliation(s)
- Thomas Stiehl
- Aachen Medical School, Institute for Computational Biomedicine & Disease Modeling,
RWTH Aachen University, Aachen, Germany
- Department for Science and Environment, Roskilde University,
Roskilde, Denmark
| |
Collapse
|
4
|
Zhu C, Stiehl T. Modelling post-chemotherapy stem cell dynamics in the bone marrow niche of AML patients. Sci Rep 2024; 14:25060. [PMID: 39443599 PMCID: PMC11500015 DOI: 10.1038/s41598-024-75429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is a stem cell-driven malignancy of the blood forming (hematopoietic) system. Despite of high dose chemotherapy with toxic side effects, many patients eventually relapse. The "7+3 regimen", which consists of 7 days of cytarabine in combination with daunorubicin during the first 3 days, is a widely used therapy protocol. Since peripheral blood cells are easily accessible to longitudinal sampling, significant research efforts have been undertaken to characterize and reduce adverse effects on circulating blood cells. However, much less is known about the impact of the 7+3 regimen on human hematopoietic stem cells and their physiological micro-environments, the so-called stem cell niches. One reason for this is the technical inability to observe human stem cells in vivo and the discomfort related to bone marrow biopsies. To better understand the treatment effects on human stem cells, we consider a mechanistic mathematical model of the stem cell niche before, during and after chemotherapy. The model accounts for different maturation stages of leukemic and hematopoietic cells and considers key processes such as cell proliferation, self-renewal, differentiation and therapy-induced cell death. In the model, hematopoietic (HSCs) and leukemic stem cells (LSCs) compete for a joint niche and respond to both systemic and niche-derived signals. We relate the model to clinical trial data from literature which longitudinally quantifies the counts of hematopoietic stem like (CD34+CD38-ALDH+) cells at diagnosis and after therapy. The proposed model can capture the clinically observed interindividual heterogeneity and reproduce the non-monotonous dynamics of the hematopoietic stem like cells observed in relapsing patients. Our model allows to simulate different scenarios proposed in literature such as therapy-related impairment of the stem cell niche or niche-mediated resistance. Model simulations suggest that during the post-therapy phase a more than 10-fold increase of hematopoietic stem-like cell proliferation rates is required to recapitulate the measured cell dynamics in patients achieving complete remission. We fit the model to data of 7 individual patients and simulate variations of the treatment protocol. These simulations are in line with the clinical finding that G-CSF priming can improve the treatment outcome. Furthermore, our model suggests that a decline of HSC counts during remission might serve as an indication for salvage therapy in patients lacking MRD (minimal residual disease) markers.
Collapse
Affiliation(s)
- Chenxu Zhu
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
- Centre for Mathematical Modeling-Human Health and Disease, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
5
|
Ruminski PG, Rettig MP, DiPersio JF. Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells. Biomolecules 2024; 14:1003. [PMID: 39199390 PMCID: PMC11353233 DOI: 10.3390/biom14081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA
| |
Collapse
|
6
|
Boklund TI, Snyder J, Gudmand-Hoeyer J, Larsen MK, Knudsen TA, Eickhardt-Dalbøge CS, Skov V, Kjær L, Hasselbalch HC, Andersen M, Ottesen JT, Stiehl T. Mathematical modelling of stem and progenitor cell dynamics during ruxolitinib treatment of patients with myeloproliferative neoplasms. Front Immunol 2024; 15:1384509. [PMID: 38846951 PMCID: PMC11154009 DOI: 10.3389/fimmu.2024.1384509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction The Philadelphia chromosome-negative myeloproliferative neoplasms are a group of slowly progressing haematological malignancies primarily characterised by an overproduction of myeloid blood cells. Patients are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib. Mathematical modelling can help propose and test hypotheses of how the treatment works. Materials and methods We present an extension of the Cancitis model, which describes the development of myeloproliferative neoplasms and their interactions with inflammation, that explicitly models progenitor cells and can account for treatment with ruxolitinib through effects on the malignant stem cell response to cytokine signalling and the death rate of malignant progenitor cells. The model has been fitted to individual patients' data for the JAK2 V617F variant allele frequency from the COMFORT-II and RESPONSE studies for patients who had substantial reductions (20 percentage points or 90% of the baseline value) in their JAK2 V617F variant allele frequency (n = 24 in total). Results The model fits very well to the patient data with an average root mean square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both malignant stem and progenitor cells. This average root mean square error is much lower than if allowing ruxolitinib treatment to affect only malignant stem or only malignant progenitor cells (average root mean square errors of 0.138 (13.8%) and 0.0874 (8.74%), respectively). Discussion Systematic simulation studies and fitting of the model to the patient data suggest that an initial reduction of the malignant cell burden followed by a monotonic increase can be recapitulated by the model assuming that ruxolitinib affects only the death rate of malignant progenitor cells. For patients exhibiting a long-term reduction of the malignant cells, the model predicts that ruxolitinib also affects stem cell parameters, such as the malignant stem cells' response to cytokine signalling.
Collapse
Affiliation(s)
- Tobias Idor Boklund
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jordan Snyder
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanne Gudmand-Hoeyer
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Morten Andersen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Thomas Stiehl
- Centre for Mathematical Modeling - Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Institute for Computational Biomedicine and Disease Modeling, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Lai X, Jiao X, Zhang H, Lei J. Computational modeling reveals key factors driving treatment-free remission in chronic myeloid leukemia patients. NPJ Syst Biol Appl 2024; 10:45. [PMID: 38678088 PMCID: PMC11055880 DOI: 10.1038/s41540-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Patients with chronic myeloid leukemia (CML) who receive tyrosine kinase inhibitors (TKIs) have been known to achieve treatment-free remission (TFR) upon discontinuing treatment. However, the underlying mechanisms of this phenomenon remain incompletely understood. This study aims to elucidate the mechanism of TFR in CML patients, focusing on the feedback interaction between leukemia stem cells and the bone marrow microenvironment. We have developed a mathematical model to explore the interplay between leukemia stem cells and the bone marrow microenvironment, allowing for the simulation of CML progression dynamics. Our proposed model reveals a dichotomous response following TKI discontinuation, with two distinct patient groups emerging: one prone to early molecular relapse and the other capable of achieving long-term TFR after treatment cessation. This finding aligns with clinical observations and underscores the essential role of feedback interaction between leukemic cells and the tumor microenvironment in sustaining TFR. Notably, we have shown that the ratio of leukemia cells in peripheral blood (PBLC) and the tumor microenvironment (TME) index can be a valuable predictive tool for identifying patients likely to achieve TFR after discontinuing treatment. This study provides fresh insights into the mechanism of TFR in CML patients and underscores the significance of microenvironmental control in achieving TFR.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xiaopei Jiao
- Department of Mathematics, Tsinghua University, Beijing, China
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, China.
| |
Collapse
|
8
|
Durmaz A, Visconte V. Capturing the unpredictability of stem cells. eLife 2024; 13:e95513. [PMID: 38427029 PMCID: PMC10906994 DOI: 10.7554/elife.95513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
A new mathematical model that can be applied to both single-cell and bulk DNA sequencing data sheds light on the processes governing population dynamics in stem cells.
Collapse
Affiliation(s)
- Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland ClinicClevelandUnited States
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
9
|
Ottesen JT, Andersen M. Aging, Inflammation, and Comorbidity in Cancers-A General In Silico Study Exemplified by Myeloproliferative Malignancies. Cancers (Basel) 2023; 15:4806. [PMID: 37835500 PMCID: PMC10572046 DOI: 10.3390/cancers15194806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: We consider dormant, pre-cancerous states prevented from developing into cancer by the immune system. Inflammatory morbidity may compromise the immune system and cause the pre-cancer to escape into an actual cancerous development. The immune deficiency described is general, but the results may vary across specific cancers due to different variances (2) Methods: We formulate a general conceptual model to perform rigorous in silico consequence analysis. Relevant existing data for myeloproliferative malignancies from the literature are used to calibrate the in silico computations. (3) Results and conclusions: The hypothesis suggests a common physiological origin for many clinical and epidemiological observations in relation to cancers in general. Examples are the observed age-dependent prevalence for hematopoietic cancers, a general mechanism-based explanation for why the risk of cancer increases with age, and how somatic mutations in general, and specifically seen in screenings of citizens, sometimes are non-increased or even decrease when followed over time. The conceptual model is used to characterize different groups of citizens and patients, describing different treatment responses and development scenarios.
Collapse
Affiliation(s)
- Johnny T. Ottesen
- Mathematical Modeling—Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
10
|
Sipos F, Műzes G. Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
Affiliation(s)
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|