1
|
Nikolaeva-Reynolds L, Cammies C, Crichton R, Gorochowski TE. Cas9-based enrichment for targeted long-read metabarcoding. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242110. [PMID: 40271134 PMCID: PMC12014237 DOI: 10.1098/rsos.242110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/25/2025]
Abstract
Metabarcoding is a valuable tool for characterizing the communities that underpin the functioning of ecosystems. However, current methods often rely on polymerase chain reaction (PCR) amplification for enrichment of marker genes. PCR can introduce significant biases that affect quantification and is typically restricted to one target loci at a time, limiting the diversity that can be captured in a single reaction. Here, we address these issues by using Cas9 to enrich marker genes for long-read nanopore sequencing directly from a DNA sample, removing the need for PCR. We show that this approach can effectively isolate a 4.5 kb region covering partial 18S and 28S rRNA genes and the ITS region in a mixed nematode community, and further adapt our approach for characterizing a diverse microbial community. We demonstrate the ability for Cas9-based enrichment to support multiplexed targeting of several different DNA regions simultaneously, enabling optimal marker gene selection for different clades of interest within a sample. We also find a strong correlation between input DNA concentrations and output read proportions for mixed-species samples, demonstrating the ability for quantification of relative species abundance. This study lays a foundation for targeted long-read sequencing to more fully capture the diversity of organisms present in complex environments.
Collapse
Affiliation(s)
| | - Christopher Cammies
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| | - Rosemary Crichton
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BristolBS8 1TQ, UK
| |
Collapse
|
2
|
Shamjetsabam ND, Rana R, Malik P, Ganguly NK. CRISPR/Cas9: an overview of recent developments and applications in cancer research. Int J Surg 2024; 110:6198-6213. [PMID: 38377059 PMCID: PMC11486967 DOI: 10.1097/js9.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) has risen as a potent gene editing method with vast potential across numerous domains, including its application in cancer research and therapy. This review article provides an extensive overview of the research that has been done so far on CRISPR-Cas9 with an emphasis on how it could be utilized in the treatment of cancer. The authors go into the underlying ideas behind CRISPR-Cas9, its mechanisms of action, and its application for the study of cancer biology. Furthermore, the authors investigate the various uses of CRISPR-Cas9 in cancer research, spanning from the discovery of genes and the disease to the creation of novel therapeutic approaches. The authors additionally discuss the challenges and limitations posed by CRISPR-Cas9 technology and offer insights into the potential applications and future directions of this cutting-edge field of research. The article intends to consolidate the present understanding and stimulate more research into CRISPR-Cas9's promise as a game-changing tool for cancer research and therapy.
Collapse
Affiliation(s)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital New Delhi
| | - Priyanka Malik
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | |
Collapse
|
3
|
Shen Y, Ye T, Li Z, Kimutai TH, Song H, Dong X, Wan J. Exploiting viral vectors to deliver genome editing reagents in plants. ABIOTECH 2024; 5:247-261. [PMID: 38974861 PMCID: PMC11224180 DOI: 10.1007/s42994-024-00147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/02/2024] [Indexed: 07/09/2024]
Abstract
Genome editing holds great promise for the molecular breeding of plants, yet its application is hindered by the shortage of simple and effective means of delivering genome editing reagents into plants. Conventional plant transformation-based methods for delivery of genome editing reagents into plants often involve prolonged tissue culture, a labor-intensive and technically challenging process for many elite crop cultivars. In this review, we describe various virus-based methods that have been employed to deliver genome editing reagents, including components of the CRISPR/Cas machinery and donor DNA for precision editing in plants. We update the progress in these methods with recent successful examples of genome editing achieved through virus-based delivery in different plant species, highlight the advantages and limitations of these delivery approaches, and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Tao Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zihan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Torotwa Herman Kimutai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Hao Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
- Hainan Seed Industry Laboratory, Sanya, 572025 China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
4
|
Meaker GA, Wilkinson AC. Ex vivo hematopoietic stem cell expansion technologies: recent progress, applications, and open questions. Exp Hematol 2024; 130:104136. [PMID: 38072133 PMCID: PMC11511678 DOI: 10.1016/j.exphem.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare but potent cell type that support life-long hematopoiesis and stably regenerate the entire blood and immune system following transplantation. HSC transplantation represents a mainstay treatment for various diseases of the blood and immune systems. The ex vivo expansion and manipulation of HSCs therefore represents an important approach to ask biological questions in experimental hematology and to help improve clinical HSC transplantation therapies. However, it has remained challenging to expand transplantable HSCs ex vivo. This review summarizes recent progress in ex vivo HSC expansion technologies and their applications to biological and clinical problems and discusses current questions in the field.
Collapse
Affiliation(s)
- Grace A Meaker
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discov Today 2023; 28:103375. [PMID: 36174966 DOI: 10.1016/j.drudis.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 02/02/2023]
Abstract
The CRISPR/Cas system was first discovered as a defense mechanism in bacteria and is now used as a tool for precise gene-editing applications. Rapidly evolving, it is increasingly applied in therapeutics. However, concerns about safety, specificity, and delivery still limit its potential. In this context, we introduce the concept of nanogenetics and speculate how the rational engineering of the CRISPR/Cas machinery could advance the biomedical field. In nanogenetics, the advantages of traditional approaches of synthetic biology could be expanded by nanotechnology approaches, enabling the design of a new generation of intrinsically safe and specific genome-editing platforms.
Collapse
|
6
|
Chen Y, Zhu M, Huang B, Jiang Y, Su J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. BIOMATERIALS ADVANCES 2023; 144:213232. [PMID: 36502750 DOI: 10.1016/j.bioadv.2022.213232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the specific structure of natural bone, most of the therapeutics are incapable to be delivered into the targeted site with effective concentrations. Nanotechnology has provided a good way to improve this issue, cell membrane mimetic nanoparticles (NPs) have been emerging as an ideal nanomaterial which integrates the advantages of natural cell membranes with synthetic NPs to significantly improve the biocompatibility as well as achieving long-lasting circulation and targeted delivery. In addition, functionalized modifications of the cell membrane facilitate more precise targeting and therapy. Here, an overview of the preparation of cell membrane-coated NPs and the properties of cell membranes from different cell sources has been given to expatiate their function and potential applications. Strategies for functionalized modification of cell membranes are also briefly described. The application of cell membrane-coated NPs for bone therapy is then presented according to the function of cell membranes. Moreover, the prospects and challenges of cell membrane-coated NPs for translational medicine have also been discussed.
Collapse
Affiliation(s)
- Yutong Chen
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China; School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengru Zhu
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Biaotong Huang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; Wenzhou Institute of Shanghai University, Wenzhou 325000, PR China.
| | - Yingying Jiang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jiacan Su
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
7
|
Panda G, Ray A. Decrypting the mechanistic basis of CRISPR/Cas9 protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:60-76. [PMID: 35577099 DOI: 10.1016/j.pbiomolbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
8
|
Mattiello L, Rütgers M, Sua-Rojas MF, Tavares R, Soares JS, Begcy K, Menossi M. Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:868027. [PMID: 35712599 PMCID: PMC9194676 DOI: 10.3389/fpls.2022.868027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The prokaryote-derived Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas mediated gene editing tools have revolutionized our ability to precisely manipulate specific genome sequences in plants and animals. The simplicity, precision, affordability, and robustness of this technology have allowed a myriad of genomes from a diverse group of plant species to be successfully edited. Even though CRISPR/Cas, base editing, and prime editing technologies have been rapidly adopted and implemented in plants, their editing efficiency rate and specificity varies greatly. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9-derived technologies and their implications on enhancing editing efficiency. We highlight the major efforts of engineering Cas9, Cas12a, Cas12b, and Cas12f proteins aiming to improve their efficiencies. We also provide a perspective on the global future of agriculturally based products using DNA-free CRISPR/Cas techniques. The improvement of CRISPR-based technologies efficiency will enable the implementation of genome editing tools in a variety of crop plants, as well as accelerate progress in basic research and molecular breeding.
Collapse
Affiliation(s)
- Lucia Mattiello
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Mark Rütgers
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Fernanda Sua-Rojas
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Tavares
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - José Sérgio Soares
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - Marcelo Menossi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022; 21:85. [PMID: 35337340 PMCID: PMC8953071 DOI: 10.1186/s12943-022-01552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems are the latest addition to the plethora of gene-editing tools. These systems have been repurposed from their natural counterparts by means of both guide RNA and Cas nuclease engineering. These RNA-guided systems offer greater programmability and multiplexing capacity than previous generation gene editing tools based on zinc finger nucleases and transcription activator like effector nucleases. CRISPR-Cas systems show great promise for individualization of cancer precision medicine. Main body The biology of Cas nucleases and dead Cas based systems relevant for in vivo gene therapy applications has been discussed. The CRISPR knockout, CRISPR activation and CRISPR interference based genetic screens which offer opportunity to assess functions of thousands of genes in massively parallel assays have been also highlighted. Single and combinatorial gene knockout screens lead to identification of drug targets and synthetic lethal genetic interactions across different cancer phenotypes. There are different viral and non-viral (nanoformulation based) modalities that can carry CRISPR-Cas components to different target organs in vivo. Conclusion The latest developments in the field in terms of optimization of performance of the CRISPR-Cas elements should fuel greater application of the latter in the realm of precision medicine. Lastly, how the already available knowledge can help in furtherance of use of CRISPR based tools in personalized medicine has been discussed.
Collapse
Affiliation(s)
- Sumit Das
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Shehnaz Bano
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Prachi Kapse
- School of Basic Medical Sciences, S P Pune University, Pune, 411007, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
10
|
Yu B, Xue X, Yin Z, Cao L, Li M, Huang J. Engineered Cell Membrane-Derived Nanocarriers: The Enhanced Delivery System for Therapeutic Applications. Front Cell Dev Biol 2022; 10:844050. [PMID: 35295856 PMCID: PMC8918578 DOI: 10.3389/fcell.2022.844050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a rapid development of biomimetic platforms using cell membranes as nanocarriers to camouflage nanoparticles for enhancing bio-interfacial capabilities. Various sources of cell membranes have been explored for natural functions such as circulation and targeting effect. Biomedical applications of cell membranes-based delivery systems are expanding from cancer to multiple diseases. However, the natural properties of cell membranes are still far from achieving desired functions and effects as a nanocarrier platform for various diseases. To obtain multi-functionality and multitasking in complex biological systems, various functionalized modifications of cell membranes are being developed based on physical, chemical, and biological methods. Notably, many research opportunities have been initiated at the interface of multi-technologies and cell membranes, opening a promising frontier in therapeutic applications. Herein, the current exploration of natural cell membrane functionality, the design principles for engineered cell membrane-based delivery systems, and the disease applications are reviewed, with a special focus on the emerging strategies in engineering approaches.
Collapse
Affiliation(s)
- Biao Yu
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Shanghai, China
- Department of Orthopedics, Luodian Hospital, Shanghai University, Shanghai, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jianping Huang
- The Second Affiliated Hospital, Shanghai University, Shanghai, China
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
11
|
Ciurkot K, Gorochowski TE, Roubos JA, Verwaal R. Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Res 2021; 49:7775-7790. [PMID: 34197613 PMCID: PMC8287914 DOI: 10.1093/nar/gkab529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
CRISPR Cas12a is an RNA-programmable endonuclease particularly suitable for gene regulation. This is due to its preference for T-rich PAMs that allows it to more easily target AT-rich promoter sequences, and built-in RNase activity which can process a single CRISPR RNA array encoding multiple spacers into individual guide RNAs (gRNAs), thereby simplifying multiplexed gene regulation. Here, we develop a flexible dCas12a-based CRISPRi system for Saccharomyces cerevisiae and systematically evaluate its design features. This includes the role of the NLS position, use of repression domains, and the position of the gRNA target. Our optimal system is comprised of dCas12a E925A with a single C-terminal NLS and a Mxi1 or a MIG1 repression domain, which enables up to 97% downregulation of a reporter gene. We also extend this system to allow for inducible regulation via an RNAP II-controlled promoter, demonstrate position-dependent effects in crRNA arrays, and use multiplexed regulation to stringently control a heterologous β-carotene pathway. Together these findings offer valuable insights into the design constraints of dCas12a-based CRISPRi and enable new avenues for flexible and efficient gene regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Klaudia Ciurkot
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands.,Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - René Verwaal
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands
| |
Collapse
|