1
|
Jouault C, Oyama N, Álvarez-Parra S, Huang D, Perrichot V, Condamine FL, Legendre F. The radiation of Hymenoptera illuminated by Bayesian inferences from the fossil record. Curr Biol 2025; 35:2164-2174.e4. [PMID: 40147435 DOI: 10.1016/j.cub.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Determining when lineages originated provides fundamental insights into the timing and pace of their diversification, improving our understanding of transformative paleoevents such as the Angiosperm Terrestrial Revolution (ATR)1 and Mid-Mesozoic Parasitoid Revolution (MMPR).2 As the MMPR overlaps with the ATR, improved age estimates help to disentangle the dynamics and temporal succession of these events that shaped modern ecosystems. Hymenoptera (ants, bees, and wasps) played an important role in the MMPR and ATR through their parasitoid and pollinating lineages. Parasitoids impact trophic networks, whereas pollinators interact with flowering plants.3,4 However, our understanding of Hymenoptera diversification remains limited by a lack of fossil-based studies and uncertainties in phylogenetic reconstructions. Combining fossil occurrences and macroevolutionary models, we estimated the origin and diversification of Hymenoptera lineages, considering changes in preservation over time and across taxa.5,6,7 Our results indicate that Hymenoptera diversification is multifaceted and lineage-specific. Sawflies diversified during the Paleozoic and Mesozoic in four episodes (middle Permian, Late Triassic to Middle Jurassic, Early Cretaceous, and the beginning of the Cenozoic) and experienced three extinction episodes (Middle Triassic, Late Jurassic, and mid-Cretaceous). The superfamily Xyeloidea originated during the middle Permian. Apocrita and parasitoid superfamilies emerged during the Early to Middle Triassic, diversified during the Late Jurassic and Early Cretaceous, and declined during the Late Cretaceous. We demonstrate that Hymenoptera experienced successive replacements during the MMPR-likely beginning in the Triassic-and synchronously with changes in floral assemblages of the ATR. We conclude with future directions to refine dating estimates from the fossil record.
Collapse
Affiliation(s)
- Corentin Jouault
- Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, UK; Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP50, 50 rue Cuvier, 75005 Paris, France; Institut des Sciences de l'Évolution de Montpellier (UMR 5554), Université de Montpellier, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Géosciences Rennes (UMR 6118), Université de Rennes, CNRS, 35000 Rennes, France.
| | - Nozomu Oyama
- Centre de Recherche en Paléontologie - Paris (CR2P), MNHN - CNRS - Sorbonne Université, 75005 Paris, France; The Kyushu University Museum, 812-8581 Fukuoka, Japan
| | - Sergio Álvarez-Parra
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Vincent Perrichot
- Géosciences Rennes (UMR 6118), Université de Rennes, CNRS, 35000 Rennes, France
| | - Fabien L Condamine
- Institut des Sciences de l'Évolution de Montpellier (UMR 5554), Université de Montpellier, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, CP50, 50 rue Cuvier, 75005 Paris, France
| |
Collapse
|
2
|
Erözden AA, Tavsanli N, Çalışkan M. Advances in bioinformatic approaches to tardigrade phylogeny. Comput Biol Chem 2024; 113:108226. [PMID: 39368175 DOI: 10.1016/j.compbiolchem.2024.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
The quest to discover the evolutionary relationships of organisms is an evolving, long-time topic of research. Such research gave rise to many different taxonomic databases and various definitions of systematic groups. One such group is the phylum Tardigrada. Tardigrades are an important field of study because of their biotechnological potential as well as their complex biological processes, which have the potential to answer questions about animal evolution. The evolutionary relationships within the phyla are subject to rigorous research, and new data is added to the literature constantly. For these studies, a widespread technique is the use of bioinformatic approaches in order to put forward concrete phylogenetic evidence. Bioinformatics is a field of computational biology that interprets large amounts of data in order to compute and demonstrate results. It is widely used not only for phylogeny but also for various different types of analyses and has been growing as a field since its foundation. This review discusses the different aspects, advantages, and methods of the use of bioinformatics in tardigrade phylogeny. It aims to put forward a defining picture of how the bioinformatic methods prove useful for providing phylogenetic results and elaborate on future perspectives.
Collapse
Affiliation(s)
- Ahmet Arıhan Erözden
- Department of Biology, Faculty of Science, İstanbul University, Vezneciler, İstanbul 34134, Turkey; Biotechnology Program, Biology Department, Institute of Graduate Studies in Sciences, İstanbul University, Vezneciler, İstanbul 34134, Turkey.
| | - Nalan Tavsanli
- Department of Biology, Faculty of Science, İstanbul University, Vezneciler, İstanbul 34134, Turkey; Biotechnology Program, Biology Department, Institute of Graduate Studies in Sciences, İstanbul University, Vezneciler, İstanbul 34134, Turkey.
| | - Mahmut Çalışkan
- Department of Biology, Faculty of Science, İstanbul University, Vezneciler, İstanbul 34134, Turkey.
| |
Collapse
|
3
|
Mussini G, Smith MP, Vinther J, Rahman IA, Murdock DJE, Harper DAT, Dunn FS. A new interpretation of Pikaia reveals the origins of the chordate body plan. Curr Biol 2024; 34:2980-2989.e2. [PMID: 38866005 DOI: 10.1016/j.cub.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Our understanding of the evolutionary origin of Chordata, one of the most disparate and ecologically significant animal phyla, is hindered by a lack of unambiguous stem-group relatives. Problematic Cambrian fossils that have been considered as candidate chordates include vetulicolians,1Yunnanozoon,2 and the iconic Pikaia.3 However, their phylogenetic placement has remained poorly constrained, impeding reconstructions of character evolution along the chordate stem lineage. Here we reinterpret the morphology of Pikaia, providing evidence for a gut canal and, crucially, a dorsal nerve cord-a robust chordate synapomorphy. The identification of these structures underpins a new anatomical model of Pikaia that shows that this fossil was previously interpreted upside down. We reveal a myomere configuration intermediate between amphioxus and vertebrates and establish morphological links between Yunnanozoon, Pikaia, and uncontroversial chordates. In this light, we perform a new phylogenetic analysis, using a revised, comprehensive deuterostome dataset, and establish a chordate stem lineage. We resolve vetulicolians as a paraphyletic group comprising the earliest diverging stem chordates, subtending a grade of more derived stem-group chordates comprising Yunnanozoon and Pikaia. Our phylogenetic results reveal the stepwise acquisition of characters diagnostic of the chordate crown group. In addition, they chart a phase in early chordate evolution defined by the gradual integration of the pharyngeal region with a segmented axial musculature, supporting classical evolutionary-developmental hypotheses of chordate origins4 and revealing a "lost chapter" in the history of the phylum.
Collapse
Affiliation(s)
- Giovanni Mussini
- University of Cambridge, Department of Earth Sciences, Downing Street, Cambridge CB2 3EQ, UK.
| | - M Paul Smith
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Jakob Vinther
- University of Bristol, School of Earth Sciences, Wills Memorial Building, Bristol BS8 1RL, UK; University of Bristol, School of Biological Sciences, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Imran A Rahman
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK; The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Duncan J E Murdock
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - David A T Harper
- Durham University, Department of Earth Sciences, Lower Mountjoy, Durham DH1 3LE, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| |
Collapse
|
4
|
Coiro M. Embracing uncertainty: The way forward in plant fossil phylogenetics. AMERICAN JOURNAL OF BOTANY 2024; 111:e16282. [PMID: 38334302 DOI: 10.1002/ajb2.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
Although molecular phylogenetics remains the most widely used method of inferring the evolutionary history of living groups, the last decade has seen a renewed interest in morphological phylogenetics, mostly driven by the promises that integrating the fossil record in phylogenetic trees offers to our understanding of macroevolutionary processes and dynamics and the possibility that the inclusion of fossil taxa could lead to more accurate phylogenetic hypotheses. The plant fossil record presents some challenges to its integration in a phylogenetic framework. Phylogenies including plant fossils often retrieve uncertain relationships with low support, or lack of resolution. This low support is due to the pervasiveness of morphological convergence among plant organs and the fragmentary nature of many plant fossils, and it is often perceived as a fundamental weakness reducing the utility of plant fossils in phylogenetics. Here I discuss the importance of uncertainty in morphological phylogenetics and how we can identify important information from different patterns and types of uncertainty. I also review a set of methodologies that can allow us to understand the causes underpinning uncertainty and how these practices can help us to further our knowledge of plant fossils. I also propose that a new visual language, including the use of networks instead of trees, represents an improvement on the old visualization based on consensus trees and more adequately serves phylogeneticists working with plant fossils. This set of methods and visualization tools represents an important way forward in a fundamental field for our understanding of the evolutionary history of plants.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA
| |
Collapse
|
5
|
Francisco Barbosa F, Mermudes JRM, Russo CAM. Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny. PeerJ 2024; 12:e16706. [PMID: 38213769 PMCID: PMC10782957 DOI: 10.7717/peerj.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Recently, many studies have addressed the performance of phylogenetic tree-building methods (maximum parsimony, maximum likelihood, and Bayesian inference), focusing primarily on simulated data. However, for discrete morphological data, there is no consensus yet on which methods recover the phylogeny with better performance. To address this lack of consensus, we investigate the performance of different methods using an empirical dataset for hexapods as a model. As an empirical test of performance, we applied normalized indices to effectively measure accuracy (normalized Robinson-Foulds metric, nRF) and precision, which are measured via resolution, one minus Colless' consensus fork index (1-CFI). Additionally, to further explore phylogenetic accuracy and support measures, we calculated other statistics, such as the true positive rate (statistical power) and the false positive rate (type I error), and constructed receiver operating characteristic plots to visualize the relationship between these statistics. We applied the normalized indices to the reconstructed trees from the reanalyses of an empirical discrete morphological dataset from extant Hexapoda using a well-supported phylogenomic tree as a reference. Maximum likelihood and Bayesian inference applying the k-state Markov (Mk) model (without or with a discrete gamma distribution) performed better, showing higher precision (resolution). Additionally, our results suggest that most available tree topology tests are reliable estimators of the performance measures applied in this study. Thus, we suggest that likelihood-based methods and tree topology tests should be used more often in phylogenetic tree studies based on discrete morphological characters. Our study provides a fair indication that morphological datasets have robust phylogenetic signal.
Collapse
Affiliation(s)
| | | | - Claudia A. M. Russo
- Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Asar Y, Sauquet H, Ho SYW. Evaluating the Accuracy of Methods for Detecting Correlated Rates of Molecular and Morphological Evolution. Syst Biol 2023; 72:1337-1356. [PMID: 37695237 PMCID: PMC10924723 DOI: 10.1093/sysbio/syad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.
Collapse
Affiliation(s)
- Yasmin Asar
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Keating JN, Garwood RJ, Sansom RS. Phylogenetic congruence, conflict and consilience between molecular and morphological data. BMC Ecol Evol 2023; 23:30. [PMID: 37403037 DOI: 10.1186/s12862-023-02131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/08/2023] [Indexed: 07/06/2023] Open
Abstract
Morphology and molecules are important data sources for estimating evolutionary relationships. Modern studies often utilise morphological and molecular partitions alongside each other in combined analyses. However, the effect of combining phenomic and genomic partitions is unclear. This is exacerbated by their size imbalance, and conflict over the efficacy of different inference methods when using morphological characters. To systematically address the effect of topological incongruence, size imbalance, and tree inference methods, we conduct a meta-analysis of 32 combined (molecular + morphology) datasets across metazoa. Our results reveal that morphological-molecular topological incongruence is pervasive: these data partitions yield very different trees, irrespective of which method is used for morphology inference. Analysis of the combined data often yields unique trees that are not sampled by either partition individually, even with the inclusion of relatively small quantities of morphological characters. Differences between morphology inference methods in terms of resolution and congruence largely relate to consensus methods. Furthermore, stepping stone Bayes factor analyses reveal that morphological and molecular partitions are not consistently combinable, i.e. data partitions are not always best explained under a single evolutionary process. In light of these results, we advise that the congruence between morphological and molecular data partitions needs to be considered in combined analyses. Nonetheless, our results reveal that, for most datasets, morphology and molecules can, and should, be combined in order to best estimate evolutionary history and reveal hidden support for novel relationships. Studies that analyse only phenomic or genomic data in isolation are unlikely to provide the full evolutionary picture.
Collapse
Affiliation(s)
- Joseph N Keating
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
- Natural History Museum, London, SW7 5BD, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Simões TR, Vernygora OV, de Medeiros BAS, Wright AM. Handling Logical Character Dependency in Phylogenetic Inference: Extensive Performance Testing of Assumptions and Solutions Using Simulated and Empirical Data. Syst Biol 2023; 72:662-680. [PMID: 36773019 PMCID: PMC10276625 DOI: 10.1093/sysbio/syad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Logical character dependency is a major conceptual and methodological problem in phylogenetic inference of morphological data sets, as it violates the assumption of character independence that is common to all phylogenetic methods. It is more frequently observed in higher-level phylogenies or in data sets characterizing major evolutionary transitions, as these represent parts of the tree of life where (primary) anatomical characters either originate or disappear entirely. As a result, secondary traits related to these primary characters become "inapplicable" across all sampled taxa in which that character is absent. Various solutions have been explored over the last three decades to handle character dependency, such as alternative character coding schemes and, more recently, new algorithmic implementations. However, the accuracy of the proposed solutions, or the impact of character dependency across distinct optimality criteria, has never been directly tested using standard performance measures. Here, we utilize simple and complex simulated morphological data sets analyzed under different maximum parsimony optimization procedures and Bayesian inference to test the accuracy of various coding and algorithmic solutions to character dependency. This is complemented by empirical analyses using a recoded data set on palaeognathid birds. We find that in small, simulated data sets, absent coding performs better than other popular coding strategies available (contingent and multistate), whereas in more complex simulations (larger data sets controlled for different tree structure and character distribution models) contingent coding is favored more frequently. Under contingent coding, a recently proposed weighting algorithm produces the most accurate results for maximum parsimony. However, Bayesian inference outperforms all parsimony-based solutions to handle character dependency due to fundamental differences in their optimization procedures-a simple alternative that has been long overlooked. Yet, we show that the more primary characters bearing secondary (dependent) traits there are in a data set, the harder it is to estimate the true phylogenetic tree, regardless of the optimality criterion, owing to a considerable expansion of the tree parameter space. [Bayesian inference, character dependency, character coding, distance metrics, morphological phylogenetics, maximum parsimony, performance, phylogenetic accuracy.].
Collapse
Affiliation(s)
- Tiago R Simões
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Oksana V Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | | | - April M Wright
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
9
|
Pacheco TL, Monné ML, Ahrens D. Morphology-based phylogenetic analysis of South American Sericini chafers (Coleoptera, Scarabaeidae) contrasts patterns of morphological disparity and current classification. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Molecular phylogenies map to biogeography better than morphological ones. Commun Biol 2022; 5:521. [PMID: 35641555 PMCID: PMC9156683 DOI: 10.1038/s42003-022-03482-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic relationships are inferred principally from two classes of data: morphological and molecular. Currently, most phylogenies of extant taxa are inferred from molecules and when morphological and molecular trees conflict the latter are often preferred. Although supported by simulations, the superiority of molecular trees has rarely been assessed empirically. Here we test phylogenetic accuracy using two independent data sources: biogeographic distributions and fossil first occurrences. For 48 pairs of morphological and molecular trees we show that, on average, molecular trees provide a better fit to biogeographic data than their morphological counterparts and that biogeographic congruence increases over research time. We find no significant differences in stratigraphic congruence between morphological and molecular trees. These results have implications for understanding the distribution of homoplasy in morphological data sets, the utility of morphology as a test of molecular hypotheses and the implications of analysing fossil groups for which molecular data are unavailable. Using biogeographical and phylogenetic data, it is shown that molecular trees fit species geographical data better than trees inferred from morphology, and that these differences are not simply due to better tree resolution.
Collapse
|
11
|
Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. The evolution of insect biodiversity. Curr Biol 2021; 31:R1299-R1311. [PMID: 34637741 DOI: 10.1016/j.cub.2021.08.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects comprise over half of all described animal species. Together with the Protura (coneheads), Collembola (springtails) and Diplura (two-pronged bristletails), insects form the Hexapoda, a terrestrial arthropod lineage characterised by possessing six legs. Exponential growth of genome-scale data for the hexapods has substantially altered our understanding of the origin and evolution of insect biodiversity. Phylogenomics has provided a new framework for reconstructing insect evolutionary history, resolving their position among the arthropods and some long-standing internal controversies such as the placement of the termites, twisted-winged insects, lice and fleas. However, despite the greatly increased size of phylogenomic datasets, contentious relationships among key insect clades remain unresolved. Further advances in insect phylogeny cannot rely on increased depth and breadth of genome and taxon sequencing. Improved modelling of the substitution process is fundamental to countering tree-reconstruction artefacts, while gene content, modelling of duplications and deletions, and comparative morphology all provide complementary lines of evidence to test hypotheses emerging from the analysis of sequence data. Finally, the integration of molecular and morphological data is key to the incorporation of fossil species within insect phylogeny. The emerging integrated framework of insect evolution will help explain the origins of insect megadiversity in terms of the evolution of their body plan, species diversity and ecology. Future studies of insect phylogeny should build upon an experimental, hypothesis-driven approach where the robustness of hypotheses generated is tested against increasingly realistic evolutionary models as well as complementary sources of phylogenetic evidence.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Chenyang Cai
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | | | - Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, UK; Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige, Italy; Center Agriculture Food Environment, University of Trento, 38010 San Michele all Adige, Italy
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Michael S Engel
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Harvey VL, Keating JN, Buckley M. Phylogenetic analyses of ray-finned fishes (Actinopterygii) using collagen type I protein sequences. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201955. [PMID: 34430038 PMCID: PMC8355665 DOI: 10.1098/rsos.201955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/20/2021] [Indexed: 05/12/2023]
Abstract
Ray-finned fishes (Actinopterygii) are the largest and most diverse group of vertebrates, comprising over half of all living vertebrate species. Phylogenetic relationships between ray-finned fishes have historically pivoted on the study of morphology, which has notoriously failed to resolve higher order relationships, such as within the percomorphs. More recently, comprehensive genomic analyses have provided further resolution of actinopterygian phylogeny, including higher order relationships. Such analyses are rightfully regarded as the 'gold standard' for phylogenetics. However, DNA retrieval requires modern or well-preserved tissue and is less likely to be preserved in archaeological or fossil specimens. By contrast, some proteins, such as collagen, are phylogenetically informative and can survive into deep time. Here, we test the utility of collagen type I amino acid sequences for phylogenetic estimation of ray-finned fishes. We estimate topology using Bayesian approaches and compare the congruence of our estimated trees with published genomic phylogenies. Furthermore, we apply a Bayesian molecular clock approach and compare estimated divergence dates with previously published genomic clock analyses. Our collagen-derived trees exhibit 77% of node positions as congruent with recent genomic-derived trees, with the majority of discrepancies occurring in higher order node positions, almost exclusively within the Percomorpha. Our molecular clock trees present divergence times that are fairly comparable with genomic-based phylogenetic analyses. We estimate the mean node age of Actinopteri at ∼293 million years (Ma), the base of Teleostei at ∼211 Ma and the radiation of percomorphs beginning at ∼141 Ma (∼350 Ma, ∼250-283 Ma and ∼120-133 Ma in genomic trees, respectively). Finally, we show that the average rate of collagen (I) sequence evolution is 0.9 amino acid substitutions for every million years of divergence, with the α3 (I) sequence evolving the fastest, followed by the α2 (I) chain. This is the quickest rate known for any vertebrate group. We demonstrate that phylogenetic analyses using collagen type I amino acid sequences generate tangible signals for actinopterygians that are highly congruent with recent genomic-level studies. However, there is limited congruence within percomorphs, perhaps due to clade-specific functional constraints acting upon collagen sequences. Our results provide important insights for future phylogenetic analyses incorporating extinct actinopterygian species via collagen (I) sequencing.
Collapse
Affiliation(s)
- Virginia L. Harvey
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Joseph N. Keating
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michael Buckley
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
13
|
Mongiardino Koch N, Garwood RJ, Parry LA. Fossils improve phylogenetic analyses of morphological characters. Proc Biol Sci 2021; 288:20210044. [PMID: 33947239 PMCID: PMC8246652 DOI: 10.1098/rspb.2021.0044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Fossils provide our only direct window into evolutionary events in the distant past. Incorporating them into phylogenetic hypotheses of living clades can help time-calibrate divergences, as well as elucidate macroevolutionary dynamics. However, the effect fossils have on phylogenetic reconstruction from morphology remains controversial. The consequences of explicitly incorporating the stratigraphic ages of fossils using tip-dated inference are also unclear. Here, we use simulations to evaluate the performance of inference methods across different levels of fossil sampling and missing data. Our results show that fossil taxa improve phylogenetic analysis of morphological datasets, even when highly fragmentary. Irrespective of inference method, fossils improve the accuracy of phylogenies and increase the number of resolved nodes. They also induce the collapse of ancient and highly uncertain relationships that tend to be incorrectly resolved when sampling only extant taxa. Furthermore, tip-dated analyses under the fossilized birth-death process outperform undated methods of inference, demonstrating that the stratigraphic ages of fossils contain vital phylogenetic information. Fossils help to extract true phylogenetic signals from morphology, an effect that is mediated by both their distinctive morphology and their temporal information, and their incorporation in total-evidence phylogenetics is necessary to faithfully reconstruct evolutionary history.
Collapse
Affiliation(s)
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
- Earth Sciences Department, Natural History Museum, London, UK
| | - Luke A Parry
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol 2020; 18:191. [PMID: 33287835 PMCID: PMC7720557 DOI: 10.1186/s12915-020-00901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species (Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored. RESULTS Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group. CONCLUSIONS We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.
Collapse
Affiliation(s)
- Tiago R Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Stephanie E Pierce
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Bai B, Meng J, Zhang C, Gong YX, Wang YQ. The origin of Rhinocerotoidea and phylogeny of Ceratomorpha (Mammalia, Perissodactyla). Commun Biol 2020; 3:509. [PMID: 32929169 PMCID: PMC7490376 DOI: 10.1038/s42003-020-01205-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
Rhinoceroses have been considered to have originated from tapiroids in the middle Eocene; however, the transition remains controversial, and the first unequivocal rhinocerotoids appeared about 4 Ma later than the earliest tapiroids of the Early Eocene. Here we describe 5 genera and 6 new species of rhinoceroses recently discovered from the early Eocene to the early middle Eocene deposits of the Erlian Basin of Inner Mongolia, China. These new materials represent the earliest members of rhinocerotoids, forstercooperiids, and/or hyrachyids, and bridge the evolutionary gap between the early Eocene ceratomorphs and middle Eocene rhinocerotoids. The phylogenetic analyses using parsimony and Bayesian inference methods support their affinities with rhinocerotoids, and also illuminate the phylogenetic relationships and biogeography of Ceratomorpha, although some discrepancies are present between the two criteria. The nearly contemporary occurrence of various rhinocerotoids indicates that the divergence of different rhinocerotoid groups occurred no later than the late early Eocene, which is soon after the split between the rhinocerotoids and the tapiroids in the early early Eocene. However, the Bayesian tip-dating estimate suggests that the divergence of different ceratomorph groups occurred in the middle Paleocene.
Collapse
Affiliation(s)
- Bin Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| | - Jin Meng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA.,Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Yan-Xin Gong
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Qing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China. .,CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
King B. Bayesian Tip-Dated Phylogenetics in Paleontology: Topological Effects and Stratigraphic Fit. Syst Biol 2020; 70:283-294. [PMID: 32692834 DOI: 10.1093/sysbio/syaa057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
The incorporation of stratigraphic data into phylogenetic analysis has a long history of debate but is not currently standard practice for paleontologists. Bayesian tip-dated (or morphological clock) phylogenetic methods have returned these arguments to the spotlight, but how tip dating affects the recovery of evolutionary relationships has yet to be fully explored. Here I show, through analysis of several data sets with multiple phylogenetic methods, that topologies produced by tip dating are outliers as compared to topologies produced by parsimony and undated Bayesian methods, which retrieve broadly similar trees. Unsurprisingly, trees recovered by tip dating have better fit to stratigraphy than trees recovered by other methods under both the Gap Excess Ratio (GER) and the Stratigraphic Completeness Index (SCI). This is because trees with better stratigraphic fit are assigned a higher likelihood by the fossilized birth-death tree model. However, the degree to which the tree model favors tree topologies with high stratigraphic fit metrics is modulated by the diversification dynamics of the group under investigation. In particular, when net diversification rate is low, the tree model favors trees with a higher GER compared to when net diversification rate is high. Differences in stratigraphic fit and tree topology between tip dating and other methods are concentrated in parts of the tree with weaker character signal, as shown by successive deletion of the most incomplete taxa from two data sets. These results show that tip dating incorporates stratigraphic data in an intuitive way, with good stratigraphic fit an expectation that can be overturned by strong evidence from character data. [fossilized birth-death; fossils; missing data; morphological clock; morphology; parsimony; phylogenetics.].
Collapse
Affiliation(s)
- Benedict King
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA, Leiden, The Netherlands.,College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|