1
|
Zhao L, Wang Y, Lyu W, Tang Z, Qiu L, Tang M. A new synonym for Viburnum erosum (Viburnaceae) in East China, based on morphological and molecular evidence. PLoS One 2025; 20:e0312920. [PMID: 40267146 PMCID: PMC12017528 DOI: 10.1371/journal.pone.0312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 04/25/2025] Open
Abstract
The critical observations of living plants in the field, along with the examination of type specimens and protologues, led us to conclude that the key characteristics, including the length of the petiole, stipules and peduncles, as well as the shape of leaves of Viburnum fengyangshanense, all fall within the variation range of V. erosum. Additionally, molecular analysis of nuclear ribosomal internal transcribed spacer (nrITS) and three plastid DNA markers (rbcL, matK and ndhF) indicates that V. fengyangshanense and V. erosum are deeply nested within a clade. Therefore, based on morphological and molecular evidence, it is demonstrated that V. fengyangshanense should be regarded as a new synonym of V. erosum.
Collapse
Affiliation(s)
- Liaocheng Zhao
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yitian Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjun Lyu
- National Germplasm Repository of Viburnum, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zijian Tang
- College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lihong Qiu
- College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Conservation Biology (2023SSY02081), Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ming Tang
- College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Conservation Biology (2023SSY02081), Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Hagelstam-Renshaw C, Ringelberg JJ, Sinou C, Cardinal-McTeague W, Bruneau A. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. REVISTA BRASILEIRA DE BOTANICA : BRAZILIAN JOURNAL OF BOTANY 2024; 48:11. [PMID: 39703368 PMCID: PMC11652589 DOI: 10.1007/s40415-024-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time. Supplementary Information The online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Collapse
Affiliation(s)
- Charlotte Hagelstam-Renshaw
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Jens J. Ringelberg
- School of Geosciences, Old College, University of Edinburgh, South Bridge, Edinburgh, EH8 9YL UK
| | - Carole Sinou
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| | - Warren Cardinal-McTeague
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2 Canada
| |
Collapse
|
3
|
Maya-Lastra CA, Sweeney PW, Eaton DAR, Torrez V, Maldonado C, Ore-Rengifo MI, Arakaki M, Donoghue MJ, Edwards EJ. Caught in the Act: Incipient Speciation at the Southern Limit of Viburnum in the Central Andes. Syst Biol 2024; 73:629-643. [PMID: 38832843 DOI: 10.1093/sysbio/syae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
A fundamental objective of evolutionary biology is to understand the origin of independently evolving species. Phylogenetic studies of species radiations rarely are able to document ongoing speciation; instead, modes of speciation, entailing geographic separation and/or ecological differentiation, are posited retrospectively. The Oreinotinus clade of Viburnum has radiated recently from north to south through the cloud forests of Mexico and Central America to the Central Andes. Our analyses support a hypothesis of incipient speciation in Oreinotinus at the southern edge of its geographic range, from central Peru to northern Argentina. Although several species and infraspecific taxa have been recognized in this area, multiple lines of evidence and analytical approaches (including analyses of phylogenetic relationships, genetic structure, leaf morphology, and climatic envelopes) favor the recognition of just a single species, V. seemenii. We show that what has previously been recognized as V. seemenii f. minor has recently occupied the drier Tucuman-Bolivian forest region from Samaipata in Bolivia to Salta in northern Argentina. Plants in these populations form a well-supported clade with a distinctive genetic signature and they have evolved smaller, narrower leaves. We interpret this as the beginning of a within-species divergence process that has elsewhere in the neotropics resulted repeatedly in Viburnum species with a particular set of leaf ecomorphs. Specifically, the southern populations are in the process of evolving the small, glabrous, and entire leaf ecomorph that has evolved in four other montane areas of endemism. As predicted based on our studies of leaf ecomorphs in Chiapas, Mexico, these southern populations experience generally drier conditions, with large diurnal temperature fluctuations. In a central portion of the range of V. seemenii, characterized by wetter climatic conditions, we also document what may be the initial differentiation of the leaf ecomorph with larger, pubescent, and toothy leaves. The emergence of these ecomorphs thus appears to be driven by adaptation to subtly different climatic conditions in separate geographic regions, as opposed to parapatric differentiation along elevational gradients as suggested by Viburnum species distributions in other parts of the neotropics.
Collapse
Affiliation(s)
- Carlos A Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
- Department of Biology, Angelo State University, ASU Station #10890, San Angelo, TX, 76909, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, 170 Whitney Ave, New Haven, CT, 06520, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution & Environmental Biology, Columbia University, 10th floor Schermerhorn Ext., 1200 Amsterdan Ave, New York, NY, 10027, USA
| | - Vania Torrez
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Carla Maldonado
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Malu I Ore-Rengifo
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, USA
| | - Mónica Arakaki
- Museo de Historia Natural & Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, P.O. Box 15072, Lima, Peru
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| |
Collapse
|
4
|
Magalhaes ILF, Martins PH, Faleiro BT, Vidigal THDA, Santos FR, Carvalho LS, Santos AJ. Complete phylogeny of Micrathena spiders suggests multiple dispersal events among Neotropical rainforests, islands and landmasses, and indicates that Andean orogeny promotes speciation. Cladistics 2024; 40:552-575. [PMID: 38861251 DOI: 10.1111/cla.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
The Neotropical region is the most diverse on the planet, largely owing to its mosaic of tropical rainforests. Multiple tectonic and climatic processes have been hypothesized to contribute to generating this diversity, including Andean orogeny, the closure of the Isthmus of Panama, the GAARlandia land bridge and historical connections among currently isolated forests. Micrathena spiders are diverse and widespread in the region, and thus a complete phylogeny of this genus allows the testing of hypotheses at multiple scales. We estimated a complete, dated phylogeny using morphological data for 117 Micrathena species and molecular data of up to five genes for a subset of 79 species. Employing event-based approaches and biogeographic stochastic mapping while considering phylogenetic uncertainty, we estimated ancestral distributions, the timing and direction of dispersal events and diversification rates among areas. The phylogeny is generally robust, with uncertainty in the position of some of the species lacking sequences. Micrathena started diversifying around 25 Ma. Andean cloud forests show the highest in-situ speciation, while the Amazon is the major dispersal source for adjacent areas. The Dry Diagonal generated few species and is a sink of diversity. Species exchange between Central and South America involved approximately 23 dispersal events and started ~20 Ma, which is consistent with a Miocene age for the Isthmus of Panama closure. We inferred four dispersal events from Central America to the Antilles in the last 20 Myr, indicating the spiders did not reach the islands through the GAARlandia land bridge. We identified important species exchange routes among the Amazon, Andean cloud forests and Atlantic forests during the Plio-Pleistocene. Sampling all species of the genus was fundamental to the conclusions above, especially in identifying the Andean forests as the area that generated the majority of species. This highlights the importance of complete taxonomic sampling in biogeographic studies.
Collapse
Affiliation(s)
- Ivan L F Magalhaes
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Pedro H Martins
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara T Faleiro
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Teofânia H D A Vidigal
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício R Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo S Carvalho
- Universidade Federal do Piauí, Campus Amílcar Ferreira Sobral, BR 343, KM 3.5, Bairro Meladão, s/no. CEP 6, 64808-660, Floriano, Piauí, Brazil
| | - Adalberto J Santos
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
McHugh SW, Donoghue MJ, Landis MJ. A Phylogenetic Model of Established and Enabled Biome Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610561. [PMID: 39282335 PMCID: PMC11398350 DOI: 10.1101/2024.08.30.610561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Where each species actually lives is distinct from where it could potentially survive and persist. This suggests that it may be important to distinguish established from enabled biome affinities when considering how ancestral species moved and evolved among major habitat types. We introduce a new phylogenetic method, called RFBS, to model how anagenetic and cladogenetic events cause established and enabled biome affinities (or, more generally, other discrete realized versus fundamental niche states) to shift over evolutionary timescale. We provide practical guidelines for how to assign established and enabled biome affinity states to extant taxa, using the flowering plant clade Viburnum as a case study. Through a battery of simulation experiments, we show that RFBS performs well, even when we have realistically imperfect knowledge of enabled biome affinities for most analyzed species. We also show that RFBS reliably discerns established from enabled affinities, with similar accuracy to standard competing models that ignore the existence of enabled biome affinities. Lastly, we apply RFBS to Viburnum to infer ancestral biomes throughout the tree and to highlight instances where repeated shifts between established affinities for warm and cold temperate forest biomes were enabled by a stable and slowly-evolving enabled affinity for both temperate biomes.
Collapse
Affiliation(s)
- Sean W. McHugh
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, Environmental Science Center, New Haven, Connecticut, 06511, USA
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| |
Collapse
|
6
|
Herrera F, Carvalho MR, Stull GW, Jaramillo C, Manchester SR. Cenozoic seeds of Vitaceae reveal a deep history of extinction and dispersal in the Neotropics. NATURE PLANTS 2024; 10:1091-1099. [PMID: 38951689 DOI: 10.1038/s41477-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
The remarkably diverse plant communities of the Neotropics are the result of diversification driven by multiple biotic (for example, speciation, extinction and dispersal) and abiotic (for example, climatic and tectonic) processes. However, in the absence of a well-preserved, thoroughly sampled and critically assessed fossil record, the associated processes of dispersal and extinction are poorly understood. We report an exceptional case study documenting patterns of extinction in the grape family (Vitaceae Juss.) on the basis of fossil seeds discovered in four Neotropical palaeofloras dated between 60 and 19 Ma. These include a new species that provides the earliest evidence of Vitaceae in the Western Hemisphere. Eight additional species reveal the former presence of major clades of the family that are currently absent from the Neotropics and elucidate previously unknown dispersal events. Our results indicate that regional extinction and dispersal have substantially impacted the evolutionary history of Vitaceae in the Neotropics. They also suggest that while the Neotropics have been dynamic centres of diversification through the Cenozoic, extant Neotropical botanical diversity has also been shaped by extensive extinction over the past 66 million years.
Collapse
Affiliation(s)
- Fabiany Herrera
- Earth Sciences, Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| | - Mónica R Carvalho
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Gregory W Stull
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- National Identification Services, USDA-APHIS-PPQ, Beltsville, MD, USA
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Steven R Manchester
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Park T, Burin G, Lazo-Cancino D, Rees JPG, Rule JP, Slater GJ, Cooper N. Charting the course of pinniped evolution: insights from molecular phylogeny and fossil record integration. Evolution 2024; 78:1212-1226. [PMID: 38644688 DOI: 10.1093/evolut/qpae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Pinnipeds (seals, sea lions, walruses, and their fossil relatives) are one of the most successful mammalian clades to live in the oceans. Despite a well-resolved molecular phylogeny and a global fossil record, a complete understanding of their macroevolutionary dynamics remains hampered by a lack of formal analyses that combine these 2 rich sources of information. We used a meta-analytic approach to infer the most densely sampled pinniped phylogeny to date (36 recent and 93 fossil taxa) and used phylogenetic paleobiological methods to study their diversification dynamics and biogeographic history. Pinnipeds mostly diversified at constant rates. Walruses, however, experienced rapid turnover in which extinction rates ultimately exceeded speciation rates from 12 to 6 Ma, possibly due to changing sea levels and/or competition with otariids (eared seals). Historical biogeographic analyses, including fossil data, allowed us to confidently identify the North Pacific and the North Atlantic (plus or minus Paratethys) as the ancestral ranges of Otarioidea (eared seals + walrus) and crown phocids (earless seals), respectively. Yet, despite the novel addition of stem pan-pinniped taxa, the region of origin for Pan-Pinnipedia remained ambiguous. These results suggest further avenues of study in pinnipeds and provide a framework for investigating other groups with substantial extinct and extant diversity.
Collapse
Affiliation(s)
- Travis Park
- School of Biological Sciences, Monash University, Melbourne, Australia
- Science Group, Natural History Museum London, London, United Kingdom
- Sciences, Museums Victoria, Melbourne, Australia
| | - Gustavo Burin
- Science Group, Natural History Museum London, London, United Kingdom
| | - Daniela Lazo-Cancino
- Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Joseph P G Rees
- Science Group, Natural History Museum London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James P Rule
- School of Biological Sciences, Monash University, Melbourne, Australia
- Science Group, Natural History Museum London, London, United Kingdom
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Natalie Cooper
- Science Group, Natural History Museum London, London, United Kingdom
| |
Collapse
|
8
|
Tejada JV, Antoine PO, Münch P, Billet G, Hautier L, Delsuc F, Condamine FL. Bayesian Total-Evidence Dating Revisits Sloth Phylogeny and Biogeography: A Cautionary Tale on Morphological Clock Analyses. Syst Biol 2024; 73:125-139. [PMID: 38041854 PMCID: PMC11129595 DOI: 10.1093/sysbio/syad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Combining morphological and molecular characters through Bayesian total-evidence dating allows inferring the phylogenetic and timescale framework of both extant and fossil taxa, while accounting for the stochasticity and incompleteness of the fossil record. Such an integrative approach is particularly needed when dealing with clades such as sloths (Mammalia: Folivora), for which developmental and biomechanical studies have shown high levels of morphological convergence whereas molecular data can only account for a limited percentage of their total species richness. Here, we propose an alternative hypothesis of sloth evolution that emphasizes the pervasiveness of morphological convergence and the importance of considering the fossil record and an adequate taxon sampling in both phylogenetic and biogeographic inferences. Regardless of different clock models and morphological datasets, the extant sloth Bradypus is consistently recovered as a megatherioid, and Choloepus as a mylodontoid, in agreement with molecular-only analyses. The recently extinct Caribbean sloths (Megalocnoidea) are found to be a monophyletic sister-clade of Megatherioidea, in contrast to previous phylogenetic hypotheses. Our results contradict previous morphological analyses and further support the polyphyly of "Megalonychidae," whose members were found in five different clades. Regardless of taxon sampling and clock models, the Caribbean colonization of sloths is compatible with the exhumation of islands along Aves Ridge and its geological time frame. Overall, our total-evidence analysis illustrates the difficulty of positioning highly incomplete fossils, although a robust phylogenetic framework was recovered by an a posteriori removal of taxa with high percentages of missing characters. Elimination of these taxa improved topological resolution by reducing polytomies and increasing node support. However, it introduced a systematic and geographic bias because most of these incomplete specimens are from northern South America. This is evident in biogeographic reconstructions, which suggest Patagonia as the area of origin of many clades when taxa are underrepresented, but Amazonia and/or Central and Southern Andes when all taxa are included. More generally, our analyses demonstrate the instability of topology and divergence time estimates when using different morphological datasets and clock models and thus caution against making macroevolutionary inferences when node support is weak or when uncertainties in the fossil record are not considered.
Collapse
Affiliation(s)
- Julia V Tejada
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Pierre-Olivier Antoine
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Philippe Münch
- Géosciences Montpellier, UMR 5243, Université de Montpellier, CNRS, Université des Antilles, Place Eugène Bataillon, 34095 Montpellier, France
| | - Guillaume Billet
- Centre de Recherche en Paléontologie—Paris, CR2P—UMR 7207, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 8 rue Buffon 75005, Paris
| | - Lionel Hautier
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Fabien L Condamine
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
9
|
Ramírez-Barahona S. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales. Evolution 2024; 78:919-933. [PMID: 38437579 DOI: 10.1093/evolut/qpae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage's biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth-death process and the dispersal-extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic-Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils' phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.
Collapse
Affiliation(s)
- Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
10
|
Zhu H, Shan Y, Li J, Zhang X, Yu J, Wang H. Assembly and comparative analysis of the complete mitochondrial genome of Viburnum chinshanense. BMC PLANT BIOLOGY 2023; 23:487. [PMID: 37821817 PMCID: PMC10566092 DOI: 10.1186/s12870-023-04493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.
Collapse
Affiliation(s)
- Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Hamm TP, Nowicki M, Boggess SL, Ranney TG, Trigiano RN. A set of SSR markers to characterize genetic diversity in all Viburnum species. Sci Rep 2023; 13:5343. [PMID: 37005396 PMCID: PMC10067831 DOI: 10.1038/s41598-023-31878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
About 160 species are classified within the Viburnum genus and many of these are cultivated for horticultural purposes. The vast dispersal of Viburnum makes the genus a useful model for studying evolutionary history and inferring how species expanded into their current distributions. Simple sequence repeat (SSR) markers were previously developed for five Viburnum species that were classified within the four major clades (Laminotinus, Crenotinus, Valvatotinus, and Porphyrotinus). The ability of some of these markers to cross-amplify in Viburnum species has been scantly evaluated, but there has not been any genus-wide assessment for the markers. We evaluated a collection of 49 SSR markers for the ability to cross-amplify in 224 samples, including 46 Viburnum species, representing all 16 subclades, and five additional species in the Viburnaceae and Caprifoliaceae. A subset of 14 potentially comprehensive markers for Viburnum species was identified and evaluated for the ability to detect polymorphisms in species outside of their respective clades. The 49 markers had overall amplification success in 52% of the samples, including a 60% success rate within the Viburnum genus and 14% in other genera. The comprehensive marker set amplified alleles in 74% of all samples tested, including 85% of Viburnum samples and 19% of outgroup samples. To the best of our knowledge, this is the first comprehensive set of markers able to characterize species across an entire genus. This set of markers can be used to assess the genetic diversity and population structure of most Viburnum species and closely allied species.
Collapse
Affiliation(s)
- Trinity P Hamm
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, 455 Research Drive, Mills River, NC, 28759-3423, USA
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Miller AH, Stroud JT, Losos JB. The ecology and evolution of key innovations. Trends Ecol Evol 2023; 38:122-131. [PMID: 36220711 DOI: 10.1016/j.tree.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The idea of 'key innovations' has long been influential in theoretical and empirical approaches to understanding adaptive diversification. Despite originally revolving around traits inducing major ecological shifts, the key innovation concept itself has evolved, conflating lineage diversification with trait-dependent ecological shifts. In this opinion article we synthesize the history of the term, clarify the relationship between key innovations and adaptive radiation, and propose a return to the original concept of key innovations: the evolution of organismal features which permit a species to occupy a previously inaccessible ecological state. Ultimately, we suggest an integrative approach to studying key innovations, necessitating experimental approaches of form and function, natural history studies of resource use, and phylogenetic comparative perspectives.
Collapse
Affiliation(s)
- Aryeh H Miller
- Department of Biology, Washington University, St Louis, MO, USA.
| | - James T Stroud
- Department of Biology, Washington University, St Louis, MO, USA.
| | - Jonathan B Losos
- Department of Biology, Washington University, St Louis, MO, USA.
| |
Collapse
|
13
|
Sinnott-Armstrong MA, Middleton R, Ogawa Y, Jacucci G, Moyroud E, Glover BJ, Rudall PJ, Vignolini S, Donoghue MJ. Multiple origins of lipid-based structural colors contribute to a gradient of fruit colors in Viburnum (Adoxaceae). THE NEW PHYTOLOGIST 2023; 237:643-655. [PMID: 36229924 DOI: 10.1111/nph.18538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.
Collapse
Affiliation(s)
- Miranda A Sinnott-Armstrong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Ecology & Evolutionary Biology, University of Colorado-Boulder, Boulder, CO, 80303, USA
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Rox Middleton
- Department of Biological Sciences, University of Bristol, 24 Tyndall Av, Bristol, BS8 1TQ, UK
| | - Yu Ogawa
- CERMAV, CNRS, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gianni Jacucci
- UMR 8552, Laboratoire Kastler Brossel, Collège de France, Sorbonne Université, Ecole Normale Supérieure-Paris Sciences et Lettres Research University, Centre Nationale de la Recherche Scientifique, 24 rue Lhomond, 75005, Paris, France
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 ILR, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EJ, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Michael J Donoghue
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|
14
|
Gates TA, Cai H, Hu Y, Han X, Griffith E, Burgener L, Hyland E, Zanno LE. Estimating ancient biogeographic patterns with statistical model discrimination. Anat Rec (Hoboken) 2022. [PMID: 36151605 DOI: 10.1002/ar.25067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
Abstract
The geographic ranges in which species live is a function of many factors underlying ecological and evolutionary contingencies. Observing the geographic range of an individual species provides valuable information about these historical contingencies for a lineage, determining the distribution of many distantly related species in tandem provides information about large-scale constraints on evolutionary and ecological processes generally. We present a linear regression method that allows for the discrimination of various hypothetical biogeographical models for determining which landscape distributional pattern best matches data from the fossil record. The linear regression models used in the discrimination rely on geodesic distances between sampling sites (typically geologic formations) as the independent variable and three possible dependent variables: Dice/Sorensen similarity; Euclidean distance; and phylogenetic community dissimilarity. Both the similarity and distance measures are useful for full-community analyses without evolutionary information, whereas the phylogenetic community dissimilarity requires phylogenetic data. Importantly, the discrimination method uses linear regression residual error to provide relative measures of support for each biogeographical model tested, not absolute answers or p-values. When applied to a recently published dataset of Campanian pollen, we find evidence that supports two plant communities separated by a transitional zone of unknown size. A similar case study of ceratopsid dinosaurs using phylogenetic community dissimilarity provided no evidence of a biogeographical pattern, but this case study suffers from a lack of data to accurately discriminate and/or too much temporal mixing. Future research aiming to reconstruct the distribution of organisms across a landscape has a statistical-based method for determining what biogeographic distributional model best matches the available data.
Collapse
Affiliation(s)
- Terry A Gates
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Hengrui Cai
- Department of Statistics, University of California Irvine, Irvine, California, USA
| | - Yifei Hu
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Xu Han
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Emily Griffith
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Ethan Hyland
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lindsay E Zanno
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
López-Antoñanzas R, Mitchell J, Simões TR, Condamine FL, Aguilée R, Peláez-Campomanes P, Renaud S, Rolland J, Donoghue PCJ. Integrative Phylogenetics: Tools for Palaeontologists to Explore the Tree of Life. BIOLOGY 2022; 11:1185. [PMID: 36009812 PMCID: PMC9405010 DOI: 10.3390/biology11081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The modern era of analytical and quantitative palaeobiology has only just begun, integrating methods such as morphological and molecular phylogenetics and divergence time estimation, as well as phenotypic and molecular rates of evolution. Calibrating the tree of life to geological time is at the nexus of many disparate disciplines, from palaeontology to molecular systematics and from geochronology to comparative genomics. Creating an evolutionary time scale of the major events that shaped biodiversity is key to all of these fields and draws from each of them. Different methodological approaches and data employed in various disciplines have traditionally made collaborative research efforts difficult among these disciplines. However, the development of new methods is bridging the historical gap between fields, providing a holistic perspective on organismal evolutionary history, integrating all of the available evidence from living and fossil species. Because phylogenies with only extant taxa do not contain enough information to either calibrate the tree of life or fully infer macroevolutionary dynamics, phylogenies should preferably include both extant and extinct taxa, which can only be achieved through the inclusion of phenotypic data. This integrative phylogenetic approach provides ample and novel opportunities for evolutionary biologists to benefit from palaeontological data to help establish an evolutionary time scale and to test core macroevolutionary hypotheses about the drivers of biological diversification across various dimensions of organisms.
Collapse
Affiliation(s)
- Raquel López-Antoñanzas
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Jonathan Mitchell
- Department of Biology, West Virginia University Institute of Technology, 410 Neville Street, Beckley, WV 25801, USA
| | - Tiago R. Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), Université de Montpellier, 34090 Montpellier, France
| | - Robin Aguilée
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | - Pablo Peláez-Campomanes
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Jonathan Rolland
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
| | | |
Collapse
|
16
|
Donoghue MJ, Eaton DAR, Maya-Lastra CA, Landis MJ, Sweeney PW, Olson ME, Cacho NI, Moeglein MK, Gardner JR, Heaphy NM, Castorena M, Rivas AS, Clement WL, Edwards EJ. Replicated radiation of a plant clade along a cloud forest archipelago. Nat Ecol Evol 2022; 6:1318-1329. [DOI: 10.1038/s41559-022-01823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
|
17
|
Abstract
SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence. These factors present a conundrum: How strong must a barrier be before between-region speciation outpaces dispersal? We designed a phylogenetic model of dispersal, extinction, and speciation that allows regional features to influence rates of biogeographic change and applied it to the neotropical radiation of Anolis lizards. Separation by water induces a threefold steeper barrier to movement than equivalent distances over land. Our model will help biologists detect relationships between evolutionary processes and the spatial contexts in which they operate.
Collapse
|
18
|
Hauffe T, Pires MM, Quental TB, Wilke T, Silvestro D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Hauffe
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Tiago B. Quental
- Departamento de Ecologia, Universidade de São Paulo São Paulo Brazil
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Germany
| | - Daniele Silvestro
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Gothenburg Global Biodiversity Centre Gothenburg Sweden
| |
Collapse
|
19
|
Schneider JV, Jungcurt T, Cardoso D, Amorim AM, Paule J, Zizka G. Predominantly Eastward Long-Distance Dispersal in Pantropical Ochnaceae Inferred From Ancestral Range Estimation and Phylogenomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ochnaceae is a pantropical family with multiple transoceanic disjunctions at deep and shallow levels. Earlier attempts to unravel the processes that led to such biogeographic patterns suffered from insufficient phylogenetic resolution and unclear delimitation of some of the genera. In the present study, we estimated divergence time and ancestral ranges based on a phylogenomic framework with a well-resolved phylogenetic backbone to tackle issues of the timing and direction of dispersal that may explain the modern global distribution of Ochnaceae. The nuclear data provided the more robust framework for divergence time estimation compared to the plastome-scale data, although differences in the inferred clade ages were mostly small. While Ochnaceae most likely originated in West Gondwana during the Late Cretaceous, all crown-group disjunctions are inferred as dispersal-based, most of them as transoceanic long-distance dispersal (LDD) during the Cenozoic. All LDDs occurred in an eastward direction except for the SE Asian clade of Sauvagesieae, which was founded by trans-Pacific dispersal from South America. The most species-rich clade by far, Ochninae, originated from either a widespread neotropical-African ancestor or a solely neotropical ancestor which then dispersed to Africa. The ancestors of this clade then diversified in Africa, followed by subsequent dispersal to the Malagasy region and tropical Asia on multiple instances in three genera during the Miocene-Pliocene. In particular, Ochna might have used the South Arabian land corridor to reach South Asia. Thus, the pantropical distribution of Ochnaceae is the result of LDD either transoceanic or via land bridges/corridors, whereas vicariance might have played a role only along the stem of the family.
Collapse
|
20
|
Cardoso D, Moonlight PW, Ramos G, Oatley G, Dudley C, Gagnon E, Queiroz LPD, Pennington RT, Särkinen TE. Defining Biologically Meaningful Biomes Through Floristic, Functional, and Phylogenetic Data. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.723558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While we have largely improved our understanding on what biomes are and their utility in global change ecology, conservation planning, and evolutionary biology is clear, there is no consensus on how biomes should be delimited or mapped. Existing methods emphasize different aspects of biomes, with different strengths and limitations. We introduce a novel approach to biome delimitation and mapping, based upon combining individual regionalizations derived from floristic, functional, and phylogenetic data linked to environmentally trained species distribution models. We define “core Biomes” as areas where independent regionalizations agree and “transition zones” as those whose biome identity is not corroborated by all analyses. We apply this approach to delimiting the neglected Caatinga seasonally dry tropical forest biome in northeast Brazil. We delimit the “core Caatinga” as a smaller and more climatically limited area than previous definitions, and argue it represents a floristically, functionally, and phylogenetically coherent unit within the driest parts of northeast Brazil. “Caatinga transition zones” represent a large and biologically important area, highlighting that ecological and evolutionary processes work across environmental gradients and that biomes are not categorical variables. We discuss the differences among individual regionalizations in an ecological and evolutionary context and the potential limitations and utility of individual and combined biome delimitations. Our integrated ecological and evolutionary definition of the Caatinga and associated transition zones are argued to best describe and map biologically meaningful biomes.
Collapse
|
21
|
Hackel J, Sanmartín I. Modelling the tempo and mode of lineage dispersal. Trends Ecol Evol 2021; 36:1102-1112. [PMID: 34462154 DOI: 10.1016/j.tree.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Lineage dispersal is a basic macroevolutionary process shaping the distribution of biodiversity. Probabilistic approaches in biogeography, epidemiology, and macroecology often model dispersal as a background process to explain extant or infer past distributions. We propose framing questions around the mode, timing, rate, and direction of lineage dispersal itself, from a lineage- or geography-centric perspective. We review available methods for modelling lineage dispersal. Likelihood- and simulation-based approaches to modelling dispersal have made progress in accounting for the variation of lineage dispersal over space, time, and branches of a phylogeny and its interaction with diversification. Methodological improvements, guided by a focus on model adequacy, will lead to more realistic models that can answer fundamental questions about the tempo and mode of lineage dispersal.
Collapse
Affiliation(s)
- Jan Hackel
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, UK.
| | | |
Collapse
|
22
|
Incorporating Topological and Age Uncertainty into Event-Based Biogeography of Sand Spiders Supports Paleo-Islands in Galapagos and Ancient Connections among Neotropical Dry Forests. DIVERSITY 2021. [DOI: 10.3390/d13090418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Event-based biogeographic methods, such as dispersal-extinction-cladogenesis, have become increasingly popular for attempting to reconstruct the biogeographic history of organisms. Such methods employ distributional data of sampled species and a dated phylogenetic tree to estimate ancestral distribution ranges. Because the input tree is often a single consensus tree, uncertainty in topology and age estimates are rarely accounted for, even when they may affect the outcome of biogeographic estimates. Even when such uncertainties are taken into account for estimates of ancestral ranges, they are usually ignored when researchers compare competing biogeographic hypotheses. We explore the effect of incorporating this uncertainty in a biogeographic analysis of the 21 species of sand spiders (Sicariidae: Sicarius) from Neotropical xeric biomes, based on a total-evidence phylogeny including a complete sampling of the genus. Using a custom R script, we account for uncertainty in ages and topology by estimating ancestral ranges over a sample of trees from the posterior distribution of a Bayesian analysis, and for uncertainty in biogeographic estimates by using stochastic maps. This approach allows for counting biogeographic events such as dispersal among areas, counting lineages through time per area, and testing biogeographic hypotheses, while not overestimating the confidence in a single topology. Including uncertainty in ages indicates that Sicarius dispersed to the Galapagos Islands when the archipelago was formed by paleo-islands that are now submerged; model comparison strongly favors a scenario where dispersal took place before the current islands emerged. We also investigated past connections among currently disjunct Neotropical dry forests; failing to account for topological uncertainty underestimates possible connections among the Caatinga and Andean dry forests in favor of connections among Caatinga and Caribbean + Mesoamerican dry forests. Additionally, we find that biogeographic models including a founder-event speciation parameter (“+J”) are more prone to suffer from the overconfidence effects of estimating ancestral ranges using a single topology. This effect is alleviated by incorporating topological and age uncertainty while estimating stochastic maps, increasing the similarity in the inference of biogeographic events between models with or without a founder-event speciation parameter. We argue that incorporating phylogenetic uncertainty in biogeographic hypothesis-testing is valuable and should be a commonplace approach in the presence of rogue taxa or wide confidence intervals in age estimates, and especially when using models including founder-event speciation.
Collapse
|
23
|
Lee AK, Gilman IS, Srivastav M, Lerner AD, Donoghue MJ, Clement WL. Reconstructing Dipsacales phylogeny using Angiosperms353: issues and insights. AMERICAN JOURNAL OF BOTANY 2021; 108:1122-1142. [PMID: 34254290 PMCID: PMC8362060 DOI: 10.1002/ajb2.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
PREMISE Phylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement of Heptacodium and Zabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb-Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times. METHODS Sampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off-target reads, and 10 fossils were used to calibrate dated trees. RESULTS Varying numbers of targeted loci and off-target plastomes were recovered from most taxa. Nuclear and plastid data confidently place Heptacodium with Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement of Zabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm-wide dating analyses, but many major splitting events date to the Eocene. CONCLUSIONS The Angiosperms353 probe set facilitated the assembly of a large, single-copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades.
Collapse
Affiliation(s)
- Aaron K. Lee
- Department of BiologyThe College of New JerseyEwingNJ08628USA
- Department of Plant and Microbial BiologyUniversity of Minnesota ‐ Twin CitiesSaint PaulMN55108USA
| | - Ian S. Gilman
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Mansa Srivastav
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Ariel D. Lerner
- Department of BiologyThe College of New JerseyEwingNJ08628USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | | |
Collapse
|
24
|
MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. Unifying Phylogenetic Birth-Death Models in Epidemiology and Macroevolution. Syst Biol 2021; 71:172-189. [PMID: 34165577 PMCID: PMC8972974 DOI: 10.1093/sysbio/syab049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Birth–death stochastic processes are the foundations of many phylogenetic models and are
widely used to make inferences about epidemiological and macroevolutionary dynamics. There
are a large number of birth–death model variants that have been developed; these impose
different assumptions about the temporal dynamics of the parameters and about the sampling
process. As each of these variants was individually derived, it has been difficult to
understand the relationships between them as well as their precise biological and
mathematical assumptions. Without a common mathematical foundation, deriving new models is
nontrivial. Here, we unify these models into a single framework, prove that many
previously developed epidemiological and macroevolutionary models are all special cases of
a more general model, and illustrate the connections between these variants. This
unification includes both models where the process is the same for all lineages and those
in which it varies across types. We also outline a straightforward procedure for deriving
likelihood functions for arbitrarily complex birth–death(-sampling) models that will
hopefully allow researchers to explore a wider array of scenarios than was previously
possible. By rederiving existing single-type birth–death sampling models, we clarify and
synthesize the range of explicit and implicit assumptions made by these models.
[Birth–death processes; epidemiology; macroevolution; phylogenetics; statistical
inference.]
Collapse
Affiliation(s)
- Ailene MacPherson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stilianos Louca
- Department of Biology, University of Oregon, USA.,Institute of Ecology and Evolution, University of Oregon, USA
| | - Angela McLaughlin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Yan Y, Davis CC, Dimitrov D, Wang Z, Rahbek C, Borregaard MK. Phytogeographic history of the Tea family inferred through high-resolution phylogeny and fossils. Syst Biol 2021; 70:1256-1271. [PMID: 34109420 DOI: 10.1093/sysbio/syab042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022] Open
Abstract
The tea family (Theaceae) has a highly unusual amphi-Pacific disjunct distribution: most extant species in the family are restricted to subtropical evergreen broadleaf forests in East Asia, while a handful of species occur exclusively in the subtropical and tropical Americas. Here we used an approach that integrates the rich fossil evidence of this group with phylogenies in biogeographic analysis to study the processes behind this distribution pattern. We first combined genome-skimming sequencing with existing molecular data to build a robust species-level phylogeny for c.140 Theaceae species, resolving most important unclarified relationships. We then developed an empirical Bayesian method to incorporate distribution evidence from fossil specimens into historical biogeographic analyses and used this method to account for the spatiotemporal history of Theaceae fossils. We compared our method with an alternative Bayesian approach and show that it provides consistent results while significantly reduces computational demands which allows analyses of much larger datasets. Our analyses revealed a circumboreal distribution of the family from the early Cenozoic to the Miocene and inferred repeated expansions and retractions of the modelled distribution in the Northern Hemisphere, suggesting that the current Theaceae distribution could be the remnant of a larger continuous distribution associated with the boreotropical forest that has been hypothesized to occupy most of the northern latitudes in the early Cenozoic. These results contradict with studies that only considered current species distributions and showcase the necessity of integrating fossil and molecular data in phylogeny-based parametric biogeographic models to improve the reliability of inferred biogeographical events.
Collapse
Affiliation(s)
- Yujing Yan
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA
| | - Dimitar Dimitrov
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Zhiheng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China.,Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Life Sciences, Imperial College London, Silkwood Park campus, Ascot SL5 7PY, UK.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Michael Krabbe Borregaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| |
Collapse
|
26
|
Development and Characterization of 15 Novel Genomic SSRs for Viburnum farreri. PLANTS 2021; 10:plants10030487. [PMID: 33807587 PMCID: PMC8000228 DOI: 10.3390/plants10030487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
The Viburnum genus is of particular interest to horticulturalists, phylogeneticists, and biogeographers. Despite its popularity, there are few existing molecular markers to investigate genetic diversity in this large genus, which includes over 160 species. There are also few polymorphic molecular tools that can delineate closely related species within the genus. Viburnum farreri, a member of the Solenotinus subclade and one of the centers of diversity for Viburnum, was selected for DNA sequencing and development of genomic simple sequence repeats (gSSRs). In this study, 15 polymorphic gSSRs were developed and characterized for a collection of 19 V. farreri samples. Number of alleles per locus ranged from two- to- eight and nine loci had four or more alleles. Observed heterozygosity ranged from 0 to 0.84 and expected heterozygosity ranged from 0.10 to 0.80 for the 15 loci. Shannon diversity index values across these loci ranged from 0.21 to 1.62. The markers developed in this study add to the existing molecular toolkit for the genus and will be used in future studies investigating cross-transferability, genetic variation, and species and cultivar delimitation in the Viburnum genus and closely allied genera in the Adoxaceae and Caprifoliaceae.
Collapse
|
27
|
Matsunaga KK, Smith SY. Fossil palm reading: using fruits to reveal the deep roots of palm diversity. AMERICAN JOURNAL OF BOTANY 2021; 108:472-494. [PMID: 33624301 PMCID: PMC8048450 DOI: 10.1002/ajb2.1616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Fossils are essential for understanding evolutionary history because they provide direct evidence of past diversity and geographic distributions. However, resolving systematic relationships between fossils and extant taxa, an essential step for many macroevolutionary studies, requires extensive comparative work on morphology and anatomy. While palms (Arecaceae) have an excellent fossil record that includes numerous fossil fruits, many are difficult to identify due in part to limited comparative data on modern fruit structure. METHODS We studied fruits of 207 palm species, representing nearly every modern genus, using X-ray microcomputed tomography. We then developed a morphological data set to test whether the fossil record of fruits can improve our understanding of palm diversity in the deep past. To evaluate the accuracy with which this data set recovers systematic relationships, we performed phylogenetic pseudofossilization analyses. We then used the data set to investigate the phylogenetic relationships of five previously published fossil palm fruits. RESULTS Phylogenetic analyses of fossils and pseudofossilization of extant taxa show that fossils can be placed accurately to the tribe and subtribe level with this data set, but node support must be considered. The phylogenetic relationships of the fossils suggest origins of many modern lineages in the Cretaceous and early Paleogene. Three of these fossils are suitable as new node calibrations for palms. CONCLUSIONS This work improves our knowledge of fruit structure in palms, lays a foundation for applying fossil fruits to macroevolutionary studies, and provides new insights into the evolutionary history and early diversification of Arecaceae.
Collapse
Affiliation(s)
- Kelly K.S. Matsunaga
- Department of Earth and Environmental Sciences & Museum of PaleontologyUniversity of MichiganAnn ArborMI48109USA
- Present address:
Department of Ecology and Evolutionary Biology & Biodiversity InstituteUniversity of KansasLawrenceKS66045USA
| | - Selena Y. Smith
- Department of Earth and Environmental Sciences & Museum of PaleontologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
28
|
Moeglein MK, Chatelet DS, Donoghue MJ, Edwards EJ. Evolutionary dynamics of genome size in a radiation of woody plants. AMERICAN JOURNAL OF BOTANY 2020; 107:1527-1541. [PMID: 33079383 DOI: 10.1002/ajb2.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Plant genome size ranges widely, providing many opportunities to examine how genome size variation affects plant form and function. We analyzed trends in chromosome number, genome size, and leaf traits for the woody angiosperm clade Viburnum to examine the evolutionary associations, functional implications, and possible drivers of genome size. METHODS Chromosome counts and genome size estimates were mapped onto a Viburnum phylogeny to infer the location and frequency of polyploidization events and trends in genome size evolution. Genome size was analyzed with leaf anatomical and physiological data to evaluate the influence of genome size on plant function. RESULTS We discovered nine independent polyploidization events, two reductions in base chromosome number, and substantial variation in genome size with a slight trend toward genome size reduction in polyploids. We did not find strong relationships between genome size and the functional and morphological traits that have been highlighted at broader phylogenetic scales. CONCLUSIONS Polyploidization events were sometimes associated with rapid radiations, demonstrating that polyploid lineages can be highly successful. Relationships between genome size and plant physiological function observed at broad phylogenetic scales may be largely irrelevant to the evolutionary dynamics of genome size at smaller scales. The view that plants readily tolerate changes in ploidy and genome size, and often do so, appears to apply to Viburnum.
Collapse
Affiliation(s)
- Morgan K Moeglein
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| |
Collapse
|