1
|
Thomas Thorpe JA. Phylogenomics supports a single origin of terrestriality in isopods. Proc Biol Sci 2024; 291:20241042. [PMID: 39471855 PMCID: PMC11521608 DOI: 10.1098/rspb.2024.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024] Open
Abstract
Terrestriality, the adaptation to life on land, is one of the key evolutionary transitions, occurring numerous times across the tree of life. Within Arthropoda, there have been several independent transitions: in hexapods, myriapods, arachnids and isopods. Isopoda is a morphologically diverse order within Crustacea, with species adapted to almost every environment on Earth. The order is divided into 11 suborders with the most speciose, Oniscidea, including terrestrial isopods such as woodlice and sea-slaters. Recent molecular phylogenetic studies have challenged traditional isopod morphological taxonomy, suggesting that several well-accepted suborders, including Oniscidea, may be non-monophyletic. This implies that terrestriality may have evolved multiple times. Current molecular hypotheses, however, are based on limited sequence data. Here, I collate available genome and transcriptome datasets for 36 isopods and four peracarid crustaceans from public sources, generate assemblies and use 970 single-copy orthologues to estimate isopod relationships and divergence times with molecular dating. The resulting phylogenetic analyses support monophyly of terrestrial isopods and suggest conflicting relationships based on nuclear ribosomal RNA sequences may be caused by long-branch attraction. Dating analyses suggest a Permo-Carboniferous origin of isopod terrestriality, much more recently than other terrestrial arthropods.
Collapse
|
2
|
Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, Kennedy JD, Lyu L, Nogués-Bravo D, Rosindell J, Yang Y, Fjeldså J, Liu J, Schmid B, Fang J, Rahbek C, Wang Z. Diversification of flowering plants in space and time. Nat Commun 2023; 14:7609. [PMID: 37993449 PMCID: PMC10665465 DOI: 10.1038/s41467-023-43396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020, Bergen, Norway
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jonathan D Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Lisha Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Shenzhen, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jingyun Fang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
|
4
|
Finet C, Kassner VA, Carvalho AB, Chung H, Day JP, Day S, Delaney EK, De Ré FC, Dufour HD, Dupim E, Izumitani HF, Gautério TB, Justen J, Katoh T, Kopp A, Koshikawa S, Longdon B, Loreto EL, Nunes MDS, Raja KKB, Rebeiz M, Ritchie MG, Saakyan G, Sneddon T, Teramoto M, Tyukmaeva V, Vanderlinde T, Wey EE, Werner T, Williams TM, Robe LJ, Toda MJ, Marlétaz F. DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biol Evol 2021; 13:evab179. [PMID: 34343293 PMCID: PMC8382681 DOI: 10.1093/gbe/evab179] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Victoria A Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Antonio B Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Henry Chung
- Department of Entomology, Michigan State University, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, United Kingdom
| | - Stephanie Day
- Department of Biological Sciences, University of Pittsburgh, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Francine C De Ré
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Héloïse D Dufour
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Eduardo Dupim
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Hiroyuki F Izumitani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Thaísa B Gautério
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Jessa Justen
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, USA
| | - Toru Katoh
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Shigeyuki Koshikawa
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | - Ben Longdon
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Elgion L Loreto
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
- Centre for Functional Genomics, Oxford Brookes University, United Kingdom
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, USA
| | | | - Gayane Saakyan
- Department of Evolution and Ecology, University of California-Davis, USA
| | - Tanya Sneddon
- School of Biology, University of St Andrews, United Kingdom
| | - Machiko Teramoto
- The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Japan
| | | | - Thyago Vanderlinde
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Emily E Wey
- Department of Biology, University of Dayton, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | | | - Lizandra J Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande do Sul, Brazil
| | - Masanori J Toda
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
5
|
Pereyra MO, Blotto BL, Baldo D, Chaparro JC, Ron SR, Elias-Costa AJ, Iglesias PP, Venegas PJ, C. Thomé MT, Ospina-Sarria JJ, Maciel NM, Rada M, Kolenc F, Borteiro C, Rivera-Correa M, Rojas-Runjaic FJ, Moravec J, De La Riva I, Wheeler WC, Castroviejo-Fisher S, Grant T, Haddad CF, Faivovich J. Evolution in the Genus Rhinella: A Total Evidence Phylogenetic Analysis of Neotropical True Toads (Anura: Bufonidae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.447.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Martín O. Pereyra
- Martín O. Pereyra: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; and Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Naci
| | - Boris L. Blotto
- Boris L. Blotto: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUN
| | - Diego Baldo
- Diego Baldo: Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Juan C. Chaparro
- Juan C. Chaparro: Museo de Biodiversidad del Perú, Cusco, Perú; and Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario, Cusco
| | - Santiago R. Ron
- Santiago R. Ron: Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito
| | - Agustín J. Elias-Costa
- Agustín J. Elias-Costa: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires
| | - Patricia P. Iglesias
- Patricia P. Iglesias: Laboratorio de Genética Evolutiva “Claudio J. Bidau”, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pablo J. Venegas
- Pablo J. Venegas: División de Herpetología-Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima
| | - Maria Tereza C. Thomé
- Maria Tereza C. Thomé: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Jhon Jairo Ospina-Sarria
- Jhon Jairo Ospina-Sarria: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; and Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali
| | - Natan M. Maciel
- Natan M. Maciel: Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marco Rada
- Marco Rada: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo
| | - Francisco Kolenc
- Francisco Kolenc: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Claudio Borteiro
- Claudio Borteiro: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Mauricio Rivera-Correa
- Mauricio Rivera-Correa: Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín
| | - Fernando J.M. Rojas-Runjaic
- Fernando J.M. Rojas-Runjaic: Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle (MHNLS), Venezuela; and Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jiří Moravec
- Jiří Moravec: Department of Zoology, National Museum, Prague, Czech Republic
| | - Ignacio De La Riva
- Ignacio de la Riva: Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid
| | - Ward C. Wheeler
- Ward C. Wheeler: Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Santiago Castroviejo-Fisher
- Santiago Castroviejo-Fisher: Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Taran Grant
- Taran Grant: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Célio F.B. Haddad
- Célio F.B. Haddad: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Julián Faivovich
- Julián Faivovich: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
| |
Collapse
|
6
|
Fouquet A, Leblanc K, Framit M, Réjaud A, Rodrigues MT, Castroviejo-Fisher S, Peloso PLV, Prates I, Manzi S, Suescun U, Baroni S, Moraes LJCL, Recoder R, de Souza SM, Dal Vecchio F, Camacho A, Ghellere JM, Rojas-Runjaic FJM, Gagliardi-Urrutia G, de Carvalho VT, Gordo M, Menin M, Kok PJR, Hrbek T, Werneck FP, Crawford AJ, Ron SR, Mueses-Cisneros JJ, Rojas Zamora RR, Pavan D, Ivo Simões P, Ernst R, Fabre AC. Species diversity and biogeography of an ancient frog clade from the Guiana Shield (Anura: Microhylidae: Adelastes, Otophryne, Synapturanus) exhibiting spectacular phenotypic diversification. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The outstanding biodiversity of the Guiana Shield has raised many questions about its origins and evolution. Frogs of the genera Adelastes, Otophryne and Synapturanus form an ancient lineage distributed mostly across this region. These genera display strikingly disparate morphologies and life-history traits. Notably, Synapturanus is conspicuously adapted to fossoriality and is the only genus within this group to have dispersed further into Amazonia. Moreover, morphological differences among Synapturanus species suggest different degrees of fossoriality that might be linked to their biogeographical history. Through integrative analysis of genetic, morphometric and acoustic data, we delimited 25 species in this clade, representing a fourfold increase. We found that the entire clade started to diversify ~55 Mya and Synapturanus ~30 Mya. Members of this genus probably dispersed three times out of the Guiana Shield both before and after the Pebas system, a wetland ecosystem occupying most of Western Amazonia during the Miocene. Using a three-dimensional osteological dataset, we characterized a high morphological disparity across the three genera. Within Synapturanus, we further characterized distinct phenotypes that emerged concomitantly with dispersals during the Miocene and possibly represent adaptations to different habitats, such as soils with different physical properties.
Collapse
Affiliation(s)
- Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Killian Leblanc
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Marlene Framit
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Miguel T Rodrigues
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Santiago Castroviejo-Fisher
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Sistemática de Vertebrados/Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Pedro L V Peloso
- Universidade Federal do Pará, Instituto de Ciências Biológicas, R. Augusto Corrêa, 1, Guamá, Belém, Pará, Brazil
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Manzi
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Uxue Suescun
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, France
| | - Sabrina Baroni
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Leandro J C L Moraes
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Avenida André Araújo 2936, Manaus, AM, Brazil
| | - Renato Recoder
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Sergio Marques de Souza
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Francisco Dal Vecchio
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Agustín Camacho
- Universidade de São Paulo Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - José Mario Ghellere
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Sistemática de Vertebrados/Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Fernando J M Rojas-Runjaic
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Sistemática de Vertebrados/Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
- Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Sección de Herpetología, Caracas, Venezuela
| | - Giussepe Gagliardi-Urrutia
- Pontifícia Universidade Católica do Rio Grande do Sul, Laboratório de Sistemática de Vertebrados/Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
- Peruvian Center for Biodiversity and Conservation (PCB&C), Iquitos, Peru
| | - Vinícius Tadeu de Carvalho
- Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais, Universidade Regional do Cariri, Rua Cel. Antônio Luiz, 1161, 63.105-000, Crato CE, Brazil
| | - Marcelo Gordo
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Marcelo Menin
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Philippe J R Kok
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Str., Łódź, Poland
| | - Tomas Hrbek
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Fernanda P Werneck
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Avenida André Araújo 2936, Manaus, AM, Brazil
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jonh Jairo Mueses-Cisneros
- Corporación para el Desarrollo Sostenible del Sur de la Amazonia-CORPOAMAZONIA, Mocoa, Putumayo, Colombia
| | - Rommel Roberto Rojas Zamora
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Dante Pavan
- Ecosfera Consultoria e Pesquisa em Meio Ambiente LTDA. Rodovia BR-259 s/n, Fazenda Bela Vista, Itapina, ES, Brazil
| | - Pedro Ivo Simões
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N, Cidade Universitária, 50760-420, Recife, PE, Brazil
| | - Raffael Ernst
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Dresden, Germany
| | - Anne-Claire Fabre
- The Natural History Museum, London, UK
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Phylogenetic relationships of the tribe Toxotrypanini (Diptera: Tephritidae) based on molecular characters. Mol Phylogenet Evol 2017; 113:84-112. [DOI: 10.1016/j.ympev.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 01/05/2023]
|
8
|
Platt RN, Amman BR, Keith MS, Thompson CW, Bradley RD. What Is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification. J Mammal 2015; 96:708-719. [PMID: 26937047 PMCID: PMC4668989 DOI: 10.1093/jmammal/gyv067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/06/2015] [Indexed: 11/13/2022] Open
Abstract
The evolutionary relationships between Peromyscus, Habromys, Isthmomys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase (Adh1-I2), beta fibrinogen (Fgb-I7), interphotoreceptor retinoid-binding protein (Rbp3), and cytochrome-b (Cytb). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus. Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data.
Collapse
Affiliation(s)
| | - Brian R. Amman
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA (RNP)
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Boulevard, Mississippi State, MS 39762, USA (RNP)
- Centers for Disease Control and Prevention, National Centers for Emerging and Zoonotic Infectious Diseases, Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, 1600 Clifton Road, Atlanta, GA 30333, USA (BRA)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA (RNP, MSK, RDB)
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA (CWT)
- Museum of Texas Tech University, 3301 4th Street, Lubbock, TX 79409-3191, USA (RDB)
| | - Megan S. Keith
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA (RNP)
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Boulevard, Mississippi State, MS 39762, USA (RNP)
- Centers for Disease Control and Prevention, National Centers for Emerging and Zoonotic Infectious Diseases, Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, 1600 Clifton Road, Atlanta, GA 30333, USA (BRA)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA (RNP, MSK, RDB)
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA (CWT)
- Museum of Texas Tech University, 3301 4th Street, Lubbock, TX 79409-3191, USA (RDB)
| | - Cody W. Thompson
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA (RNP)
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Boulevard, Mississippi State, MS 39762, USA (RNP)
- Centers for Disease Control and Prevention, National Centers for Emerging and Zoonotic Infectious Diseases, Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, 1600 Clifton Road, Atlanta, GA 30333, USA (BRA)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA (RNP, MSK, RDB)
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA (CWT)
- Museum of Texas Tech University, 3301 4th Street, Lubbock, TX 79409-3191, USA (RDB)
| | - Robert D. Bradley
- Department of Biochemistry, Molecular Biology, Plant Pathology, and Entomology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA (RNP)
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, 2 Research Boulevard, Mississippi State, MS 39762, USA (RNP)
- Centers for Disease Control and Prevention, National Centers for Emerging and Zoonotic Infectious Diseases, Division of High Consequence Pathogens and Pathology, Viral Special Pathogens Branch, 1600 Clifton Road, Atlanta, GA 30333, USA (BRA)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA (RNP, MSK, RDB)
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA (CWT)
- Museum of Texas Tech University, 3301 4th Street, Lubbock, TX 79409-3191, USA (RDB)
| |
Collapse
|
9
|
Norup MF, Petersen G, Burrows S, Bouchenak-Khelladi Y, Leebens-Mack J, Pires JC, Linder HP, Seberg O. Evolution of Asparagus L. (Asparagaceae): Out-of-South-Africa and multiple origins of sexual dimorphism. Mol Phylogenet Evol 2015; 92:25-44. [PMID: 26079131 DOI: 10.1016/j.ympev.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
In the most comprehensive study to date we explored the phylogeny and evolution of the genus Asparagus, with emphasis on the southern African species. We included 211 accessions, representing 77 (92%) of the southern African, 6 (17%) of the tropical African, 10 (56%) of the strictly European and 6 (9%) of the Eurasian species. We analyzed DNA sequences from three plastid regions (trnH-psbA, trnD-T, ndhF) and from the nuclear region phytochrome C (PHYC) with parsimony and maximum likelihood methods, and recovered a monophyletic Asparagus. The phylogeny conflicts with all previous infra-generic classifications. It has many strongly supported clades, corroborated by morphological characters, which may provide a basis for a revised taxonomy. Additionally, the phylogeny indicates that many of the current species delimitations are problematic. Using biogeographic analyses that account for phylogenetic uncertainty (S-DIVA) and take into account relative branch lengths (Lagrange) we confirm the origin of Asparagus in southern Africa, and find no evidence that the dispersal of Asparagus follow the Rand flora pattern. We find that all truly dioecious species of Asparagus share a common origin, but that sexual dimorphism has arisen independently several times.
Collapse
Affiliation(s)
- Maria F Norup
- Natural History Museum of Denmark, Sølvgade 83, Opg. S, K-1307 Copenhagen K, Denmark
| | - Gitte Petersen
- Natural History Museum of Denmark, Sølvgade 83, Opg. S, K-1307 Copenhagen K, Denmark
| | - Sandie Burrows
- Buffelskloof Nature Reserve Herbarium, P.O. Box 710, Lydenburg 1120, South Africa
| | - Yanis Bouchenak-Khelladi
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - J Chris Pires
- Division of Biological Sciences, 371 B Life Sciences Center, 1201 Rollins Road, University of Missouri-Columbia, Columbia, MO 65211-7310, USA
| | - H Peter Linder
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ole Seberg
- Natural History Museum of Denmark, Sølvgade 83, Opg. S, K-1307 Copenhagen K, Denmark.
| |
Collapse
|
10
|
Maia-Carvalho B, Gonçalves H, Ferrand N, Martínez-Solano I. Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol 2014; 79:270-8. [DOI: 10.1016/j.ympev.2014.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
11
|
Phylogenetics, ancestral state reconstruction, and a new infrafamilial classification of the pantropical Ochnaceae (Medusagynaceae, Ochnaceae s.str., Quiinaceae) based on five DNA regions. Mol Phylogenet Evol 2014; 78:199-214. [DOI: 10.1016/j.ympev.2014.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 11/23/2022]
|
12
|
Molecular evidence for the origin and evolutionary history of the rare American desert monotypic family Setchellanthaceae. ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0136-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert F. Morphology and Phylogenetic Position of the Freshwater Green Microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). JOURNAL OF PHYCOLOGY 2013; 49:115-129. [PMID: 27008394 DOI: 10.1111/jpy.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/22/2012] [Indexed: 06/05/2023]
Abstract
The green algal family Chlorochytriaceae comprises relatively large coccoid algae with secondarily thickened cell walls. Despite its morphological distinctness, the family remained molecularly uncharacterized. In this study, we investigated the morphology and phylogenetic position of 16 strains determined as members of two Chlorochytriaceae genera, Chlorochytrium and Scotinosphaera. The phylogenetic reconstructions were based on the analyses of two data sets, including a broad, concatenated alignment of small subunit rDNA and rbcL sequences, and a 10-gene alignment of 32 selected taxa. All analyses revealed the distant relation of the two genera, segregated in two different classes: Chlorophyceae and Ulvophyceae. Chlorochytrium strains were inferred in two distinct clades of the Stephanosphaerinia clade within the Chlorophyceae. Whereas clade A morphologically fits the description of Chlorochytrium, the strains of clade B coincide with the circumscription of the genus Neospongiococcum. The Scotinosphaera strains formed a distinct and highly divergent clade within the Ulvophyceae, warranting the recognition of a new order, Scotinosphaerales. Morphologically, the order is characterized by large cells bearing local cell wall thickenings, pyrenoid matrix dissected by numerous anastomosing cytoplasmatic channels, sporogenesis comprising the accumulation of secondary carotenoids in the cell periphery and almost simultaneous cytokinesis. The close relationship of the Scotinosphaerales with other early diverging ulvophycean orders enforces the notion that nonmotile unicellular freshwater organisms have played an important role in the early diversification of the Ulvophyceae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Tomáš Kalina
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Katarína Nemjová
- Charles University in Prague, Faculty of Science, Department of Botany, Benátská 2, 128 01, Prague 2, Czech Republic
| | - Olivier De Clerck
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | - Frederik Leliaert
- Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Mol Phylogenet Evol 2012; 66:969-78. [PMID: 23261713 DOI: 10.1016/j.ympev.2012.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 11/20/2022]
Abstract
Snake diversity in the island of Sri Lanka is extremely high, hosting at least 89 inland (i.e., non-marine) snake species, of which at least 49 are endemic. This includes the endemic genera Aspidura, Balanophis, Cercaspis, Haplocercus, and Pseudotyphlops, which are of uncertain phylogenetic affinity. We present phylogenetic evidence from nuclear and mitochondrial loci showing the relationships of 40 snake species from Sri Lanka (22 endemics) to the remaining global snake fauna. To determine the phylogenetic placement of these species, we create a molecular dataset containing 10 genes for all global snake genera, while also sampling all available species for genera with endemic species occurring in Sri Lanka. Our sampling comprises five mitochondrial genes (12S, 16S, cyt-b, ND2, and ND4) and five nuclear genes (BDNF, c-mos, NT3 RAG-1, and RAG-2), for a total of up to 9582bp per taxon. We find that the five endemic genera represent portions of four independent colonizations of Sri Lanka, with Cercaspis nested within Colubrinae, Balanophis in Natricinae, Pseudotyphlops in Uropeltidae, and that Aspidura+Haplocercus represents a distinct, ancient lineage within Natricinae. We synonymize two endemic genera that render other genera paraphyletic (Haplocercus with Aspidura, and Cercaspis with Lycodon), and discover that further endemic radiations may be present on the island, including a new taxon from the blindsnake family Typhlopidae, suggesting a large endemic radiation. Despite its small size relative to other islands such as New Guinea, Borneo, and Madagascar, Sri Lanka has one of the most phylogenetically diverse island snake faunas in the world, and more research is needed to characterize the island's biodiversity, with numerous undescribed species in multiple lineages.
Collapse
|
15
|
Hinchliff CE, Roalson EH. Using supermatrices for phylogenetic inquiry: an example using the sedges. Syst Biol 2012; 62:205-19. [PMID: 23103590 DOI: 10.1093/sysbio/sys088] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we use supermatrix data-mining methods to reconstruct a large, highly inclusive phylogeny of Cyperaceae from nucleotide data available on GenBank. We explore the properties of these trees and their utility for phylogenetic inference, and show that even the highly incomplete alignments characteristic of supermatrix approaches may yield very good estimates of phylogeny. We present a novel pipeline for filtering sparse alignments to improve their phylogenetic utility by maximizing the partial decisiveness of the matrices themselves through a technique we call "phylogenetic scaffolding," and we present a new method of scoring tip instability (i.e. "rogue taxa") based on the I statistic implemented in the software Mesquite. The modified statistic, which we call I(S), is somewhat more straightforward to interpret than similar statistics, and our implementation of it may be applied to large sets of large trees. The largest sedge trees presented here contain more than 1500 tips (about one quarter of all sedge species) and are based on multigene alignments with more than 20 000 sites and more than 90% missing data. These trees match well with previously supported phylogenetic hypotheses, but have lower overall support values and less resolution than more heavily filtered trees. Our best-resolved trees are characterized by stronger support values than any previously published sedge phylogenies, and show some relationships that are incongruous with previous studies. Overall, we show that supermatrix methods offer powerful means of pursuing phylogenetic study and these tools have high potential value for many systematic biologists.
Collapse
Affiliation(s)
- Cody E Hinchliff
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
16
|
Agorreta A, Rüber L. A standardized reanalysis of molecular phylogenetic hypotheses of Gobioidei. SYST BIODIVERS 2012. [DOI: 10.1080/14772000.2012.699477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Townsend TM, Mulcahy DG, Noonan BP, Sites JW, Kuczynski CA, Wiens JJ, Reeder TW. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol Phylogenet Evol 2011; 61:363-80. [DOI: 10.1016/j.ympev.2011.07.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
|
18
|
Simmons MP. Radical instability and spurious branch support by likelihood when applied to matrices with non-random distributions of missing data. Mol Phylogenet Evol 2011; 62:472-84. [PMID: 22067131 DOI: 10.1016/j.ympev.2011.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 10/10/2011] [Accepted: 10/23/2011] [Indexed: 10/16/2022]
Abstract
Non-random distributions of missing data are a general problem for likelihood-based statistical analyses, including those in a phylogenetic context. Extensive non-randomly distributed missing data are particularly problematic in supermatrix analyses that include many terminals and/or loci. It has been widely reported that missing data can lead to loss of resolution, but only very rarely create misleading or otherwise unsupported results in a parsimony context. Yet this does not hold for all parametric-based analyses because of their assumption of homogeneity across characters and lineages, which can lead to both long-branch attraction and long-branch repulsion. Contrived examples were used to demonstrate that non-random distributions of missing data, even without rate heterogeneity among characters and a well fitting model, can provide misleading likelihood-based topologies and branch-support values that are radically unstable based on slight modifications to character sampling. The same can occur despite complete absence of parsimony-informative characters. Otherwise unsupported resolution and high branch support for these clades were found to occur frequently in 22 empirical examples derived from a published supermatrix. Partitioning characters based on the distribution of missing data helped to decrease, but did not eliminate, these artifacts. These artifacts were exacerbated by low quality tree searches, particularly when holding only a single optimal tree that must be fully resolved.
Collapse
Affiliation(s)
- Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
19
|
Wendling BM, Galbreath KE, DeChaine EG. Resolving the evolutionary history of Campanula (Campanulaceae) in western North America. PLoS One 2011; 6:e23559. [PMID: 21931605 PMCID: PMC3170292 DOI: 10.1371/journal.pone.0023559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Recent phylogenetic works have begun to address long-standing questions regarding the systematics of Campanula (Campanulaceae). Yet, aspects of the evolutionary history, particularly in northwestern North America, remain unresolved. Thus, our primary goal in this study was to infer the phylogenetic positions of northwestern Campanula species within the greater Campanuloideae tree. We combined new sequence data from 5 markers (atpB, rbcL, matK, and trnL-F regions of the chloroplast and the nuclear ITS) representing 12 species of Campanula with previously published datasets for worldwide campanuloids, allowing us to include approximately 75% of North American Campanuleae in a phylogenetic analysis of the Campanuloideae. Because all but one of North American Campanula species are nested within a single campanuloid subclade (the Rapunculus clade), we conducted a separate set of analyses focused specifically on this group. Our findings show that i) the campanuloids have colonized North America at least 6 times, 4 of which led to radiations, ii) all but one North American campanuloid are nested within the Rapunculus clade, iii) in northwestern North America, a C. piperi – C. lasiocarpa ancestor gave rise to a monophyletic Cordilleran clade that is sister to a clade containing C. rotundifolia, iv) within the Cordilleran clade, C. parryi var. parryi and C. parryi var. idahoensis exhibit a deep, species-level genetic divergence, and v) C. rotundifolia is genetically diverse across its range and polyphyletic. Potential causes of diversification and endemism in northwestern North America are discussed.
Collapse
Affiliation(s)
- Barry M. Wendling
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Kurt E. Galbreath
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Eric G. DeChaine
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pyron RA, Burbrink FT. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 2011; 66:163-78. [PMID: 22220872 DOI: 10.1111/j.1558-5646.2011.01437.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Snake diversity varies by at least two orders of magnitude among extant lineages, with numerous groups containing only one or two species, and several young clades exhibiting exceptional richness (>700 taxa). With a phylogeny containing all known families and subfamilies, we find that these patterns cannot be explained by background rates of speciation and extinction. The majority of diversity appears to derive from a radiation within the superfamily Colubroidea, potentially stemming from the colonization of new areas and the evolution of advanced venom-delivery systems. In contrast, negative relationships between clade age, clade size, and diversification rate suggest the potential for possible bias in estimated diversification rates, interpreted by some recent authors as support for ecologically mediated limits on diversity. However, evidence from the fossil record indicates that numerous lineages were far more diverse in the past, and that extinction has had an important impact on extant diversity patterns. Thus, failure to adequately account for extinction appears to prevent both rate- and diversity-limited models from fully characterizing richness dynamics in snakes. We suggest that clade-level extinction may provide a key mechanism for explaining negative or hump-shaped relationships between clade age and diversity, and the prevalence of ancient, species-poor lineages in numerous groups.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA.
| | | |
Collapse
|
21
|
Zheng Y, Peng R, Kuro-o M, Zeng X. Exploring Patterns and Extent of Bias in Estimating Divergence Time from Mitochondrial DNA Sequence Data in a Particular Lineage: A Case Study of Salamanders (Order Caudata). Mol Biol Evol 2011; 28:2521-35. [DOI: 10.1093/molbev/msr072] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Campbell V, Lapointe FJ. Retrieving a mitogenomic mammal tree using composite taxa. Mol Phylogenet Evol 2011; 58:149-56. [DOI: 10.1016/j.ympev.2010.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 10/17/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
23
|
|
24
|
Sanderson MJ, McMahon MM, Steel M. Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evol Biol 2010; 10:155. [PMID: 20500873 PMCID: PMC2897806 DOI: 10.1186/1471-2148-10-155] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/25/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Phylogenomic studies based on multi-locus sequence data sets are usually characterized by partial taxon coverage, in which sequences for some loci are missing for some taxa. The impact of missing data has been widely studied in phylogenetics, but it has proven difficult to distinguish effects due to error in tree reconstruction from effects due to missing data per se. We approach this problem using a explicitly phylogenomic criterion of success, decisiveness, which refers to whether the pattern of taxon coverage allows for uniquely defining a single tree for all taxa. RESULTS We establish theoretical bounds on the impact of missing data on decisiveness. Results are derived for two contexts: a fixed taxon coverage pattern, such as that observed from an already assembled data set, and a randomly generated pattern derived from a process of sampling new data, such as might be observed in an ongoing comparative genomics sequencing project. Lower bounds on how many loci are needed for decisiveness are derived for the former case, and both lower and upper bounds for the latter. When data are not decisive for all trees, we estimate the probability of decisiveness and the chances that a given edge in the tree will be distinguishable. Theoretical results are illustrated using several empirical examples constructed by mining sequence databases, genomic libraries such as ESTs and BACs, and complete genome sequences. CONCLUSION Partial taxon coverage among loci can limit phylogenomic inference by making it impossible to distinguish among multiple alternative trees. However, even though lack of decisiveness is typical of many sparse phylogenomic data sets, it is often still possible to distinguish a large fraction of edges in the tree.
Collapse
Affiliation(s)
- Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson AZ 85721 USA
| | - Michelle M McMahon
- Department of Plant Sciences, University of Arizona, Tucson AZ 85721 USA
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
25
|
Cocquyt E, Verbruggen H, Leliaert F, De Clerck O. Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol Biol Evol 2010; 27:2052-61. [PMID: 20368268 DOI: 10.1093/molbev/msq091] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ulvophyceae, one of the four classes of the Chlorophyta, is of particular evolutionary interest because it features an unrivaled morphological and cytological diversity. Morphological types range from unicells and simple multicellular filaments to sheet-like and complex corticated thalli. Cytological layouts range from typical small cells containing a single nucleus and chloroplast to giant cells containing millions of nuclei and chloroplasts. In order to understand the evolution of these morphological and cytological types, the present paper aims to assess whether the Ulvophyceae are monophyletic and elucidate the ancient relationships among its orders. Our approach consists of phylogenetic analyses (maximum likelihood and Bayesian inference) of seven nuclear genes, small subunit nuclear ribosomal DNA and two plastid markers with carefully chosen partitioning strategies, and models of sequence evolution. We introduce a procedure for fast site removal (site stripping) targeted at improving phylogenetic signal in a particular epoch of interest and evaluate the specificity of fast site removal to retain signal about ancient relationships. From our phylogenetic analyses, we conclude that the ancestral ulvophyte likely was a unicellular uninucleate organism and that macroscopic growth was achieved independently in various lineages involving radically different mechanisms: either by evolving multicellularity with coupled mitosis and cytokinesis (Ulvales-Ulotrichales and Trentepohliales), by obtaining a multinucleate siphonocladous organization where every nucleus provides for its own cytoplasmic domain (Cladophorales and Blastophysa), or by developing a siphonous organization characterized by either one macronucleus or millions of small nuclei and cytoplasmic streaming (Bryopsidales and Dasycladales). We compare different evolutionary scenarios giving rise to siphonous and siphonocladous cytologies and argue that these did not necessarily evolve from a multicellular or even multinucleate state but instead could have evolved independently from a unicellular ancestor.
Collapse
Affiliation(s)
- Ellen Cocquyt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
26
|
Molecular systematics: A synthesis of the common methods and the state of knowledge. Cell Mol Biol Lett 2010; 15:311-41. [PMID: 20213503 PMCID: PMC6275913 DOI: 10.2478/s11658-010-0010-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 03/01/2010] [Indexed: 11/21/2022] Open
Abstract
The comparative and evolutionary analysis of molecular data has allowed researchers to tackle biological questions that have long remained unresolved. The evolution of DNA and amino acid sequences can now be modeled accurately enough that the information conveyed can be used to reconstruct the past. The methods to infer phylogeny (the pattern of historical relationships among lineages of organisms and/or sequences) range from the simplest, based on parsimony, to more sophisticated and highly parametric ones based on likelihood and Bayesian approaches. In general, molecular systematics provides a powerful statistical framework for hypothesis testing and the estimation of evolutionary processes, including the estimation of divergence times among taxa. The field of molecular systematics has experienced a revolution in recent years, and, although there are still methodological problems and pitfalls, it has become an essential tool for the study of evolutionary patterns and processes at different levels of biological organization. This review aims to present a brief synthesis of the approaches and methodologies that are most widely used in the field of molecular systematics today, as well as indications of future trends and state-of-the-art approaches.
Collapse
|