1
|
Raheem DC, Gower DJ, Breugelmans K, Ranawana KB, Backeljau T. The systematics and evolution of the Sri Lankan rainforest land snail Corilla: New insights from RADseq-based phylogenetics. Mol Phylogenet Evol 2023; 182:107731. [PMID: 36781030 DOI: 10.1016/j.ympev.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The stylommatophoran land-snail genus Corilla is endemic to Sri Lanka and India's Western Ghats. On the basis of habitat distribution and shell morphology, the 10 extant Sri Lankan species fall into two distinct groups, lowland and montane. Here, we use phylogenetic analyses of restriction-site-associated DNA sequencing (RADseq) data and ancestral-state reconstructions of habitat association and shell morphology to clarify the systematics and evolution of Sri Lankan Corilla. Our dataset consists of 9 species of Corilla. Phylogenetic analyses were based on 88 assemblies (9,604-4,132,850 bp) generated by the RADseq assembler ipyrad, using four parameter combinations and different levels of missing data. Trees were inferred using a maximum likelihood (ML) approach. Ancestral states were reconstructed using maximum parsimony (MP) and ML approaches, with 1 binary state character analysed for habitat association (lowland vs montane) and 6 binary state characters analysed for shell morphology (shape, colour, lip width, length of upper palatal folds, orientation of upper palatal folds and collabral sculpture). Over a wide range of missing data (40-87 % missing individuals per locus) and assembly sizes (62,279-4,132,850 bp), nearly all trees conformed to one of two topologies (A and B), most relationships were strongly supported and total branch support approached the maximal value. Apart from the position of Corilla odontophora 'south', topologies A and B showed similar, well-resolved relationships at and above the species level. Our study agrees with the shell-based taxonomy of C. adamsi, C. beddomeae, C. carabinata, C. colletti and C. humberti (all maximally supported as monophyletic species). It shows that C. erronea and C. fryae constitute a single relatively widespread species (for which the valid name is C. erronea) and that the names C. gudei and C. odontophora each apply to at least two distinct, yet conchologically-cryptic species. The MP and ML ancestral-state reconstructions yielded broadly similar results and provide firm evidence that diversification in Sri Lankan Corilla has involved evolutionary convergence in the shell morphology of lowland lineages, with a pale shell and wide lip having evolved on at least two separate occasions (in C. carabinata and C. colletti) from montane ancestors having a dark, narrow-lipped shell.
Collapse
Affiliation(s)
- Dinarzarde C Raheem
- Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; Department of Life Sciences, Natural History Museum, London SW7 5BD, UK.
| | - David J Gower
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Karin Breugelmans
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | - Kithsiri B Ranawana
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
2
|
Srivastav M, Clement WL, Landrein S, Zhang J, Howarth DG, Donoghue MJ. A phylogenomic analysis of Lonicera and its bearing on the evolution of organ fusion. AMERICAN JOURNAL OF BOTANY 2023; 110:e16143. [PMID: 36807121 DOI: 10.1002/ajb2.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 05/11/2023]
Abstract
PREMISE The ~140 species of Lonicera are characterized by variously fused leaves, bracteoles, and ovaries, making it a model system for studying the evolution and development of organ fusion. However, previous phylogenetic analyses, based mainly on chloroplast DNA markers, have yielded uncertain and conflicting results. A well-supported phylogeny of Lonicera will allow us to trace the evolutionary history of organ fusion. METHODS We inferred the phylogeny of Lonicera using restriction site-associated DNA sequencing (RADSeq), sampling all major clades and 18 of the 23 subsections. This provided the basis for inferring the evolution of five fusion-related traits. RESULTS RADSeq data yielded a well-resolved and well-supported phylogeny. The two traditionally recognized subgenera (Periclymenum and Chamaecerasus), three of the four sections (Isoxylosteum, Coeloxylosteum, and Nintooa), and half of the subsections sampled were recovered as monophyletic. However, the large and heterogeneous section Isika was strongly supported as paraphyletic. Nintooa, a clade of ~22 mostly vine-forming species, including L. japonica, was recovered in a novel position, raising the possibility of cytonuclear discordance. We document the parallel evolution of fused leaves, bracteoles, and ovaries, with rare reversals. Most strikingly, complete cupules, in which four fused bracteoles completely enclose two unfused ovaries, arose at least three times. Surprisingly, these appear to have evolved directly from ancestors with free bracteoles instead of partial cupules. CONCLUSIONS We provide the most comprehensive and well-supported phylogeny of Lonicera to date. Our inference of multiple evolutionary shifts in organ fusion provides a solid foundation for in depth developmental and functional analyses.
Collapse
Affiliation(s)
- Mansa Srivastav
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Wendy L Clement
- Department of Biology, The College of New Jersey, Ewing, New Jersey, 08628, USA
| | - Sven Landrein
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
3
|
Chambers EA, Tarvin RD, Santos JC, Ron SR, Betancourth‐Cundar M, Hillis DM, Matz MV, Cannatella DC. 2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics. Ecol Evol 2023; 13:e9842. [PMID: 36911313 PMCID: PMC9994478 DOI: 10.1002/ece3.9842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/10/2023] Open
Abstract
Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony-informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.
Collapse
Affiliation(s)
- E. Anne Chambers
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Environmental Science, Policy, and Management and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Rebecca D. Tarvin
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Integrative Biology and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Juan C. Santos
- Department of Biological SciencesSt John's UniversityNew YorkNew YorkUSA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | | | - David M. Hillis
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - Mikhail V. Matz
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
4
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
5
|
Ferrer Obiol J, James HF, Chesser RT, Bretagnolle V, González-Solís J, Rozas J, Riutort M, Welch AJ. Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Syst Biol 2021; 70:976-996. [PMID: 33512506 PMCID: PMC8357341 DOI: 10.1093/sysbio/syaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - R Terry Chesser
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Vincent Bretagnolle
- Centre d’Études Biologiques de Chizé, CNRS & La Rochelle Université, 79360, Villiers en Bois, France
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | | |
Collapse
|
6
|
Costa-Araújo R, Silva-Jr JS, Boubli JP, Rossi RV, Canale GR, Melo FR, Bertuol F, Silva FE, Silva DA, Nash SD, Sampaio I, Farias IP, Hrbek T. An integrative analysis uncovers a new, pseudo-cryptic species of Amazonian marmoset (Primates: Callitrichidae: Mico) from the arc of deforestation. Sci Rep 2021; 11:15665. [PMID: 34341361 PMCID: PMC8328995 DOI: 10.1038/s41598-021-93943-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Amazonia has the richest primate fauna in the world. Nonetheless, the diversity and distribution of Amazonian primates remain little known and the scarcity of baseline data challenges their conservation. These challenges are especially acute in the Amazonian arc of deforestation, the 2500 km long southern edge of the Amazonian biome that is rapidly being deforested and converted to agricultural and pastoral landscapes. Amazonian marmosets of the genus Mico are little known endemics of this region and therefore a priority for research and conservation efforts. However, even nascent conservation efforts are hampered by taxonomic uncertainties in this group, such as the existence of a potentially new species from the Juruena-Teles Pires interfluve hidden within the M. emiliae epithet. Here we test if these marmosets belong to a distinct species using new morphological, phylogenomic, and geographic distribution data analysed within an integrative taxonomic framework. We discovered a new, pseudo-cryptic Mico species hidden within the epithet M. emiliae, here described and named after Horacio Schneider, the pioneer of molecular phylogenetics of Neotropical primates. We also clarify the distribution, evolutionary and morphological relationships of four other Mico species, bridging Linnean, Wallacean, and Darwinian shortfalls in the conservation of primates in the Amazonian arc of deforestation.
Collapse
Affiliation(s)
- Rodrigo Costa-Araújo
- Museu Paraense Emílio Goeldi, Mastozoology Collection, Belém, 66077-830, Brazil.
- Laboratory of Evolution and Animal Genetics, Federal University of Amazonas, Manaus, 69077-000, Brazil.
| | - José S Silva-Jr
- Museu Paraense Emílio Goeldi, Mastozoology Collection, Belém, 66077-830, Brazil
| | - Jean P Boubli
- School of Science, Engineering and Environment, University of Salford, Salford, M54WT, UK
| | - Rogério V Rossi
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, 78060-900, Brazil
| | - Gustavo R Canale
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, 78557-267, Brazil
| | - Fabiano R Melo
- Department of Forest Engineering, Federal University of Viçosa, Viçosa, 36570-900, Brazil
| | - Fabrício Bertuol
- Laboratory of Evolution and Animal Genetics, Federal University of Amazonas, Manaus, 69077-000, Brazil
| | - Felipe E Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, 69553-225, Brazil
| | - Diego A Silva
- Graduate Program in Ecology and Conservation, State University of Mato Grosso, Nova Xavantina, 78690-000, Brazil
| | - Stephen D Nash
- Departments of Anatomical Sciences and Art, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Iracilda Sampaio
- Institute of Coastal Studies, Federal University of Pará, Bragança, 68600-000, Brazil
| | - Izeni P Farias
- Laboratory of Evolution and Animal Genetics, Federal University of Amazonas, Manaus, 69077-000, Brazil
| | - Tomas Hrbek
- Laboratory of Evolution and Animal Genetics, Federal University of Amazonas, Manaus, 69077-000, Brazil.
- Department of Biology, Trinity University, San Antonio, 78212, USA.
| |
Collapse
|
7
|
Guinand B, Oral M, Tougard C. Brown trout phylogenetics: A persistent mirage towards (too) many species. JOURNAL OF FISH BIOLOGY 2021; 99:298-307. [PMID: 33483952 DOI: 10.1111/jfb.14686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Bruno Guinand
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Münevver Oral
- Faculty of Fisheries and Aquatic Science, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
8
|
Esquerré D, Keogh JS, Demangel D, Morando M, Avila LJ, Sites JW, Ferri-Yáñez F, Leaché AD. Rapid radiation and rampant reticulation: Phylogenomics of South American Liolaemus lizards. Syst Biol 2021; 71:286-300. [PMID: 34259868 DOI: 10.1093/sysbio/syab058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction-site associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah, USA
| | - Francisco Ferri-Yáñez
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC & Laboratorio Internacional en Cambio Global CSIC-PUC (LINCGlobal), Calle José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Comparison of sequence-capture and ddRAD approaches in resolving species and populations in hexacorallian anthozoans. Mol Phylogenet Evol 2021; 163:107233. [PMID: 34139346 DOI: 10.1016/j.ympev.2021.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Metridium as a case study to confirm the low level of information available in six loci for species differentiation commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concatenated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support and resolution for both current species and relationships between geographic areas. The ddRAD datasets displayed ambiguity among species, and support between major geographic groupings was not as high as the sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, combined with the ability to add additional individuals and expand beyond the genus Metridium over time, emphasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and suggest potential implications for the biogeography of Metridium based on our sampling.
Collapse
|
10
|
Bonito VE, Baird AH, Bridge T, Cowman PF, Fenner D. Types, topotypes and vouchers are the key to progress in coral taxonomy: Comment on Wepfer et al. (2020). Mol Phylogenet Evol 2021; 159:107104. [PMID: 33609706 DOI: 10.1016/j.ympev.2021.107104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Victor E Bonito
- Coral Coast Conservation Center, Votua Village, Baravi, Nadroga, Fiji.
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Tom Bridge
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Douglas Fenner
- NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, HI 96817, USA
| |
Collapse
|
11
|
Lv X, Hu J, Hu Y, Li Y, Xu D, Ryder OA, Irwin DM, Yu L. Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Mol Phylogenet Evol 2020; 157:107065. [PMID: 33387649 DOI: 10.1016/j.ympev.2020.107065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.
Collapse
Affiliation(s)
- Xue Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yiwen Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Yitian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Dongming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
12
|
Cowman PF, Quattrini AM, Bridge TC, Watkins-Colwell GJ, Fadli N, Grinblat M, Roberts TE, McFadden CS, Miller DJ, Baird AH. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol Phylogenet Evol 2020; 153:106944. [DOI: 10.1016/j.ympev.2020.106944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
|
13
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Brown RM. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Mol Phylogenet Evol 2020; 151:106899. [PMID: 32590046 DOI: 10.1016/j.ympev.2020.106899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Using FrogCap, a recently-developed sequence-capture protocol, we obtained >12,000 highly informative exons, introns, and ultraconserved elements (UCEs), which we used to illustrate variation in evolutionary histories of these classes of markers, and to resolve long-standing systematic problems in Southeast Asian Golden-backed frogs of the genus-complex Hylarana. We also performed a comprehensive suite of analyses to assess the relative performance of different genetic markers, data filtering strategies, tree inference methods, and different measures of branch support. To reduce gene tree estimation error, we filtered the data using different thresholds of taxon completeness (missing data) and parsimony informative sites (PIS). We then estimated species trees using concatenated datasets and Maximum Likelihood (IQ-TREE) in addition to summary (ASTRAL-III), distance-based (ASTRID), and site-based (SVDQuartets) multispecies coalescent methods. Topological congruence and branch support were examined using traditional bootstrap, local posterior probabilities, gene concordance factors, quartet frequencies, and quartet scores. Our results did not yield a single concordant topology. Instead, introns, exons, and UCEs clearly possessed different phylogenetic signals, resulting in conflicting, yet strongly-supported phylogenetic estimates. However, a combined analysis comprising the most informative introns, exons, and UCEs converged on a similar topology across all analyses, with the exception of SVDQuartets. Bootstrap values were consistently high despite high levels of incongruence and high proportions of gene trees supporting conflicting topologies. Although low bootstrap values did indicate low heuristic support, high bootstrap support did not necessarily reflect congruence or support for the correct topology. This study reiterates findings of some previous studies, which demonstrated that traditional bootstrap values can produce positively misleading measures of support in large phylogenomic datasets. We also showed a remarkably strong positive relationship between branch length and topological congruence across all datasets, implying that very short internodes remain a challenge to resolve, even with orders of magnitude more data than ever before. Overall, our results demonstrate that more data from unfiltered or combined datasets produced superior results. Although data filtering reduced gene tree incongruence, decreased amounts of data also biased phylogenetic estimation. A point of diminishing returns was evident, at which higher congruence (from more stringent filtering) at the expense of amount of data led to topological error as assessed by comparison to more complete datasets across different genomic markers. Additionally, we showed that applying a parameter-rich model to a partitioned analysis of concatenated data produces better results compared to unpartitioned, or even partitioned analysis using model selection. Despite some lingering uncertainties, a combined analysis of our genomic data and sequences supplemented from GenBank (on the basis of a few gene regions) revealed highly supported novel systematic arrangements. Based on these new findings, we transfer Amnirana nicobariensis into the genus Indosylvirana; and I. milleti and Hylarana celebensis to the genus Papurana. We also provisionally place H. attigua in the genus Papurana pending verification from positively identified (voucher substantiated) samples.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377, Singapore.
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92505, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
14
|
Data, time and money: evaluating the best compromise for inferring molecular phylogenies of non-model animal taxa. Mol Phylogenet Evol 2020; 142:106660. [DOI: 10.1016/j.ympev.2019.106660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
|
15
|
Rincon-Sandoval M, Betancur-R R, Maldonado-Ocampo JA. Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Mol Ecol 2019; 28:1096-1115. [PMID: 30714250 DOI: 10.1111/mec.15036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The Neotropical region represents one of the greatest biodiversity hot spots on earth. Despite its unparalleled biodiversity, regional comparative phylogeographic studies are still scarce, with most focusing on model clades (e.g. birds) and typically examining a handful of loci. Here, we apply a genome-wide comparative phylogeographic approach to test hypotheses of codiversification of freshwater fishes in the trans-Andean region. Using target capture methods, we examined exon data for over 1,000 loci combined with complete mitochondrial genomes to study the phylogeographic history of five primary fish species (>150 individuals) collected from eight major river basins in Northwestern South America and Lower Central America. To assess their patterns of genetic structure, we inferred genealogical concordance taking into account all major aspects of phylogeography (within loci, across multiple genes, across species and among biogeographic provinces). Based on phylogeographic concordance factors, we tested four a priori biogeographic hypotheses, finding support for three of them and uncovering a novel, unexpected pattern of codiversification. The four emerging inter-riverine patterns are as follows: (a) Tuira + Atrato, (b) Ranchería + Catatumbo, (c) Magdalena system and (d) Sinú + Atrato. These patterns are interpreted as shared responses to the complex uplifting and orogenic processes that modified or sundered watersheds, allowing codiversification and speciation over geological time. We also find evidence of cryptic speciation in one of the species examined and instances of mitochondrial introgression in others. These results help further our knowledge of the historical geographic factors shaping the outstanding biodiversity of the Neotropics.
Collapse
Affiliation(s)
- Melissa Rincon-Sandoval
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico.,Department of Biology, The University of Oklahoma, Norman, Oklahoma
| | - Javier A Maldonado-Ocampo
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
16
|
Du Y, Wu S, Edwards SV, Liu L. The effect of alignment uncertainty, substitution models and priors in building and dating the mammal tree of life. BMC Evol Biol 2019; 19:203. [PMID: 31694538 PMCID: PMC6833305 DOI: 10.1186/s12862-019-1534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The flood of genomic data to help build and date the tree of life requires automation at several critical junctures, most importantly during sequence assembly and alignment. It is widely appreciated that automated alignment protocols can yield inaccuracies, but the relative impact of various sources error on phylogenomic analysis is not yet known. This study employs an updated mammal data set of 5162 coding loci sampled from 90 species to evaluate the effects of alignment uncertainty, substitution models, and fossil priors on gene tree, species tree, and divergence time estimation. Additionally, a novel coalescent likelihood ratio test is introduced for comparing competing species trees against a given set of gene trees. RESULTS The aligned DNA sequences of 5162 loci from 90 species were trimmed and filtered using trimAL and two filtering protocols. The final dataset contains 4 sets of alignments - before trimming, after trimming, filtered by a recently proposed pipeline, and further filtered by comparing ML gene trees for each locus with the concatenation tree. Our analyses suggest that the average discordance among the coalescent trees is significantly smaller than that among the concatenation trees estimated from the 4 sets of alignments or with different substitution models. There is no significant difference among the divergence times estimated with different substitution models. However, the divergence dates estimated from the alignments after trimming are more recent than those estimated from the alignments before trimming. CONCLUSIONS Our results highlight that alignment uncertainty of the updated mammal data set and the choice of substitution models have little impact on tree topologies yielded by coalescent methods for species tree estimation, whereas they are more influential on the trees made by concatenation. Given the choice of calibration scheme and clock models, divergence time estimates are robust to the choice of substitution models, but removing alignments deemed problematic by trimming algorithms can lead to more recent dates. Although the fossil prior is important in divergence time estimation, Bayesian estimates of divergence times in this data set are driven primarily by the sequence data.
Collapse
Affiliation(s)
- Yan Du
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116 People’s Republic of China
| | - Scott V. Edwards
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Liang Liu
- Liang Liu, Department of Statistics and Institute of Bioinformatics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| |
Collapse
|
17
|
Allio R, Scornavacca C, Nabholz B, Clamens AL, Sperling FAH, Condamine FL. Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Syst Biol 2019; 69:38-60. [DOI: 10.1093/sysbio/syz030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/20/2023] Open
Abstract
Abstract
Evolutionary relationships have remained unresolved in many well-studied groups, even though advances in next-generation sequencing and analysis, using approaches such as transcriptomics, anchored hybrid enrichment, or ultraconserved elements, have brought systematics to the brink of whole genome phylogenomics. Recently, it has become possible to sequence the entire genomes of numerous nonbiological models in parallel at reasonable cost, particularly with shotgun sequencing. Here, we identify orthologous coding sequences from whole-genome shotgun sequences, which we then use to investigate the relevance and power of phylogenomic relationship inference and time-calibrated tree estimation. We study an iconic group of butterflies—swallowtails of the family Papilionidae—that has remained phylogenetically unresolved, with continued debate about the timing of their diversification. Low-coverage whole genomes were obtained using Illumina shotgun sequencing for all genera. Genome assembly coupled to BLAST-based orthology searches allowed extraction of 6621 orthologous protein-coding genes for 45 Papilionidae species and 16 outgroup species (with 32% missing data after cleaning phases). Supermatrix phylogenomic analyses were performed with both maximum-likelihood (IQ-TREE) and Bayesian mixture models (PhyloBayes) for amino acid sequences, which produced a fully resolved phylogeny providing new insights into controversial relationships. Species tree reconstruction from gene trees was performed with ASTRAL and SuperTriplets and recovered the same phylogeny. We estimated gene site concordant factors to complement traditional node-support measures, which strengthens the robustness of inferred phylogenies. Bayesian estimates of divergence times based on a reduced data set (760 orthologs and 12% missing data) indicate a mid-Cretaceous origin of Papilionoidea around 99.2 Ma (95% credibility interval: 68.6–142.7 Ma) and Papilionidae around 71.4 Ma (49.8–103.6 Ma), with subsequent diversification of modern lineages well after the Cretaceous-Paleogene event. These results show that shotgun sequencing of whole genomes, even when highly fragmented, represents a powerful approach to phylogenomics and molecular dating in a group that has previously been refractory to resolution.
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Céline Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Institut de Biologie Computationnelle (IBC), Montpellier, France
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Anne-Laure Clamens
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA, IRD, CIRAD, Montpellier SupAgro), 755 Avenue du Campus Agropolis, 34988 Montferrier-sur-Lez, France
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| | - Felix AH Sperling
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| | - Fabien L Condamine
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| |
Collapse
|
18
|
Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A. Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 2018; 129:268-279. [PMID: 30195039 DOI: 10.1016/j.ympev.2018.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Notothenioids are a clade of ∼120 species of marine fishes distributed in extreme southern hemisphere temperate near-shore habitats and in the Southern Ocean surrounding Antarctica. Over the past 25 years, molecular and morphological approaches have redefined hypotheses of relationships among notothenioid lineages as well as their relationships among major lineages of percomorph teleosts. These phylogenies provide a basis for investigation of mechanisms of evolutionary diversification within the clade and have enhanced our understanding of the notothenioid adaptive radiation. Despite extensive efforts, there remain several questions concerning the phylogeny of notothenioids. In this study, we deploy DNA sequences of ∼100,000 loci obtained using RADseq to investigate the phylogenetic relationships of notothenioids and to assess the utility of RADseq loci for lineages that exhibit divergence times ranging from the Paleogene to the Quaternary. The notothenioid phylogenies inferred from the RADseq loci provide unparalleled resolution and node support for several long-standing problems including, (1) relationships among species of Trematomus, (2) resolution of Indonotothenia cyanobrancha as the sister lineage of Trematomus, (3) the deep paraphyly of Nototheniidae, (4) the paraphyly of Lepidonotothen s.l., (5) paraphyly of Artedidraco, and 6) the monophyly of the Bathydraconidae. Assessment of site rates demonstrates that RADseq loci are similar to mtDNA protein coding genes and exhibit peak phylogenetic informativeness at the time interval during which the major Antarctic notothenioid lineages originated and diversified. In addition to providing a well-resolved phylogenetic hypothesis for notothenioids, our analyses quantify the predicted utility of RADseq loci for Cenozoic phylogenetic inferences.
Collapse
Affiliation(s)
- Thomas J Near
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.
| | - Daniel J MacGuigan
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Elyse Parker
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Carl D Struthers
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Christopher D Jones
- Antarctic Ecosystem Research Division, NOAA Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| |
Collapse
|