1
|
Dejean A, Orivel J, Cerdá X, Azémar F, Corbara B, Touchard A. Foraging by predatory ants: A review. INSECT SCIENCE 2024. [PMID: 39434405 DOI: 10.1111/1744-7917.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/23/2024]
Abstract
In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a "nomadic phase" when the colony relocates between different places and a "stationary phase" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.
Collapse
Affiliation(s)
- Alain Dejean
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Jérôme Orivel
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio, Sevilla, Spain
| | - Frédéric Azémar
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Bruno Corbara
- Université Clermont-Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | - Axel Touchard
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Schultz TR, Sosa-Calvo J, Kweskin MP, Lloyd MW, Dentinger B, Kooij PW, Vellinga EC, Rehner SA, Rodrigues A, Montoya QV, Fernández-Marín H, Ješovnik A, Niskanen T, Liimatainen K, Leal-Dutra CA, Solomon SE, Gerardo NM, Currie CR, Bacci M, Vasconcelos HL, Rabeling C, Faircloth BC, Doyle VP. The coevolution of fungus-ant agriculture. Science 2024; 386:105-110. [PMID: 39361762 DOI: 10.1126/science.adn7179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Fungus-farming ants cultivate multiple lineages of fungi for food, but, because fungal cultivar relationships are largely unresolved, the history of fungus-ant coevolution remains poorly known. We designed probes targeting >2000 gene regions to generate a dated evolutionary tree for 475 fungi and combined it with a similarly generated tree for 276 ants. We found that fungus-ant agriculture originated ~66 million years ago when the end-of-Cretaceous asteroid impact temporarily interrupted photosynthesis, causing global mass extinctions but favoring the proliferation of fungi. Subsequently, ~27 million years ago, one ancestral fungal cultivar population became domesticated, i.e., obligately mutualistic, when seasonally dry habitats expanded in South America, likely isolating the cultivar population from its free-living, wet forest-dwelling conspecifics. By revealing these and other major transitions in fungus-ant coevolution, our results clarify the historical processes that shaped a model system for nonhuman agriculture.
Collapse
Affiliation(s)
- Ted R Schultz
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jeffrey Sosa-Calvo
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew P Kweskin
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Michael W Lloyd
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Bryn Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Pepijn W Kooij
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Else C Vellinga
- University Herbarium, University of California at Berkeley, Berkeley, CA, USA
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, US Department of Agriculture Agricultural Research Center, Beltsville, MD, USA
| | - Andre Rodrigues
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Quimi V Montoya
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama
- Smithsonian Tropical Research Institute (STRI), Ancon, Panama
| | - Ana Ješovnik
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Tuula Niskanen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Caio A Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Scott E Solomon
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Cameron R Currie
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mauricio Bacci
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Heraldo L Vasconcelos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Christian Rabeling
- Social Insect Research Group, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Integrative Taxonomy of Insects, Institute of Biology, and KomBioTa - Center for Biodiversity and Integrative Taxonomy; University of Hohenheim, Stuttgart, Germany
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| |
Collapse
|
3
|
Gao Q, Long J, Liu C, Liu H, Ran H, Lacy KD, Kronauer DJC. Ooceraeahainingensis sp. nov.: A new Chinese Ooceraea (Hymenoptera, Formicidae, Dorylinae) species with a dealate queen, closely allied to the queenless clonal raider ant O.biroi. Zookeys 2024; 1205:101-113. [PMID: 38947166 PMCID: PMC11211655 DOI: 10.3897/zookeys.1205.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
The clonal raider ant, Ooceraeabiroi, is a queenless species that reproduces asexually, and these traits make it an attractive model system for laboratory research. However, it is unclear where on the ant phylogeny these traits evolved, partly because few closely related species have been described and studied. Here, we describe a new raider ant species, Ooceraeahainingensis sp. nov., from Zhejiang, China. This species is closely related to O.biroi but can be distinguished by the following features: 1) workers of O.hainingensis sp. nov. have an obvious promesonotal suture and a metanotal groove, whereas these characters are ambiguous in O.biroi; and 2) the subpetiolar process of O.hainingensis is prominent and anteroventrally directed like a thumb with sublinear posteroventral margin, while in O.biroi, it is anteroventrally directed but slightly backward-bent. Molecular phylogenetic analyses confirm that O.hainingensis is genetically distinct from O.biroi. Importantly, unlike O.biroi, O.hainingensis has a queen caste with wings and well-developed eyes. This suggests that the loss of the queen caste and transition to asexual reproduction by workers is specific to O.biroi and occurred after that species diverged from closely related congeneric species.
Collapse
Affiliation(s)
- Qionghua Gao
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety/National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jiliang Long
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety/National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chengyuan Liu
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoyu Liu
- Haining Ziwei Senior High School, Haining, 314400, China
| | - Hao Ran
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Kip D. Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Daniel J. C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
4
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Jouault C, Condamine FL, Legendre F, Perrichot V. The Angiosperm Terrestrial Revolution buffered ants against extinction. Proc Natl Acad Sci U S A 2024; 121:e2317795121. [PMID: 38466878 PMCID: PMC10990090 DOI: 10.1073/pnas.2317795121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.
Collapse
Affiliation(s)
- Corentin Jouault
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
| | - Frédéric Legendre
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
| | - Vincent Perrichot
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| |
Collapse
|
6
|
Cruaud A, Rasplus JY, Zhang J, Burks R, Delvare G, Fusu L, Gumovsky A, Huber JT, Janšta P, Mitroiu MD, Noyes JS, van Noort S, Baker A, Böhmová J, Baur H, Blaimer BB, Brady SG, Bubeníková K, Chartois M, Copeland RS, Dale-Skey Papilloud N, Dal Molin A, Dominguez C, Gebiola M, Guerrieri E, Kresslein RL, Krogmann L, Lemmon E, Murray EA, Nidelet S, Nieves-Aldrey JL, Perry RK, Peters RS, Polaszek A, Sauné L, Torréns J, Triapitsyn S, Tselikh EV, Yoder M, Lemmon AR, Woolley JB, Heraty JM. The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps. Cladistics 2024; 40:34-63. [PMID: 37919831 DOI: 10.1111/cla.12561] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Roger Burks
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Gérard Delvare
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Lucian Fusu
- Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alex Gumovsky
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - John T Huber
- Natural Resources Canada, c/o Canadian National Collection of Insects, Ottawa, Ontario, Canada
| | - Petr Janšta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Entomology, State Museum of Natural History, Stuttgart, Germany
| | | | - John S Noyes
- Insects Division, Natural History Museum, London, UK
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Austin Baker
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Julie Böhmová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hannes Baur
- Department of Invertebrates, Natural History Museum Bern, Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Bonnie B Blaimer
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Seán G Brady
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Kristýna Bubeníková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marguerite Chartois
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Robert S Copeland
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | | | - Ana Dal Molin
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Chrysalyn Dominguez
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Marco Gebiola
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Emilio Guerrieri
- Insects Division, Natural History Museum, London, UK
- CNR-Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Portici, Italy
| | - Robert L Kresslein
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Lars Krogmann
- Department of Entomology, State Museum of Natural History, Stuttgart, Germany
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Emily Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Sabine Nidelet
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Ryan K Perry
- Department of Plant Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Ralph S Peters
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | | | - Laure Sauné
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Javier Torréns
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
| | - Serguei Triapitsyn
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | | | - Matthew Yoder
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, Florida, USA
| | - James B Woolley
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - John M Heraty
- Department of Entomology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
7
|
Yamada A, Nguyen DD, Eguchi K. First discovery of the ant genus Eburopone Borowiec, 2016 (Hymenoptera, Formicidae, Dorylinae) in the Oriental realm, with description of a new species from Vietnam. Zookeys 2023; 1184:1-17. [PMID: 38314328 PMCID: PMC10838167 DOI: 10.3897/zookeys.1184.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 02/06/2024] Open
Abstract
The doryline ant genus Eburopone Borowiec, 2016 currently contains only one valid species, E.wroughtoni (Forel, 1910) from southern Africa, with a considerable number of undescribed species awaiting formal description in the Afrotropical and Malagasy regions. In the present paper, Eburoponeeasoanasp. nov. is described based on workers and dealate queens from a colony series collected in an evergreen forest on the Dak Lak Plateau of Vietnam (Ea So Nature Reserve, Dak Lak Province). The worker of the new species is morphologically clearly distinguished from E.wroughtoni by the combination of following characteristics: i) frontal line distinct, extending a little beyond mid-length of cranium; ii) anterior (frontoclypeal) margins of torulo-posttorular complex not forming conspicuous lobes protruding over anterior clypeal margin in full-face view; iii) mandibles when closed in full-face view forming only a little space between anterior clypeal margin and mandibles; iv) promesonotal suture faint and inconspicuous; v) abdominal segment III in dorsal view distinctly wider than long, with lateral margins only feebly convex. This represents the first discovery of the genus Eburopone in the Oriental realm, revealing the disjunct distribution of the genus. A partial sequence of the mitochondrial COI gene (658 bp) is provided as a DNA barcode for the new species. A worker-based key to the doryline genera of the Oriental realm is also provided.
Collapse
Affiliation(s)
- Aiki Yamada
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
| | - Dai Dac Nguyen
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, VietnamInstitute of Ecology and Biological Resources, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Katsuyuki Eguchi
- Systematic Zoology Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, JapanTokyo Metropolitan UniversityHachiojiJapan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, JapanNagasaki UniversityNagasakiJapan
| |
Collapse
|
8
|
Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, Mikó I, Rasplus JY, Smith DR, Talamas EJ, Brady SG, Buffington ML. Key innovations and the diversification of Hymenoptera. Nat Commun 2023; 14:1212. [PMID: 36869077 PMCID: PMC9984522 DOI: 10.1038/s41467-023-36868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany.
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA.
| | - Bernardo F Santos
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Astrid Cruaud
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Robert R Kula
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jean-Yves Rasplus
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - David R Smith
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Elijah J Talamas
- Florida State Collection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 1911 SW 34th St, Gainesville, FL, 32608, USA
| | - Seán G Brady
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Matthew L Buffington
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| |
Collapse
|
9
|
Feitosa RM, Camacho GP, Silva TSR, Ulysséa MA, Ladino N, Oliveira AM, Albuquerque EZ, Schmidt FA, Ribas CR, Nogueira A, Baccaro FB, Queiroz ACM, Dáttilo W, Silva RR, Santos JC, Rabello AM, Morini MSDC, Quinet YP, Del-Claro K, Harada AY, Carvalho KS, Sobrinho TG, Moraes AB, Vargas AB, Torezan-Silingardi HM, Souza JLP, Marques T, Izzo T, Lange D, Santos IA, Nahas L, Paolucci L, Soares SA, Costa-Milanez CB, Diehl-Fleig E, Campos RBF, Solar R, Frizzo T, Darocha W. Ants of Brazil: an overview based on 50 years of diversity studies. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2089268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rodrigo M. Feitosa
- Laboratório de Sistemática e Biologia de Formigas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gabriela P. Camacho
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany
- Laboratório de Hymenoptera, Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S. R. Silva
- The Insect Biodiversity and Biogeography Laboratory, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Mônica A. Ulysséa
- Laboratório de Hymenoptera, Museu de Zoologia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Natalia Ladino
- Laboratório de Sistemática e Biologia de Formigas, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Aline M. Oliveira
- The Insect Biodiversity and Biogeography Laboratory, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Emília Z. Albuquerque
- AntLab, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Rabeling Lab, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Fernando A. Schmidt
- Laboratório de Ecologia de Formigas, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - Carla R. Ribas
- Laboratório de Ecologia de Formigas, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Fabrício B. Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antônio C. M. Queiroz
- Laboratório de Ecologia de Formigas, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología AC, Xalapa, Veracruz, Mexico
| | - Rogério R. Silva
- Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Jean C. Santos
- Laboratório de Ecologia & Biodiversidade, Departamento de Ecologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ananza M. Rabello
- Instituto de Estudos do Xingu, Universidade Federal do Sul e Sudeste do Pará, São Félix do Xingu, Pará, Brazil
| | - Maria Santina De C. Morini
- Laboratório de Mirmecologia do Alto Tietê, Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Yves P. Quinet
- Laboratório de Entomologia, Departamento de Biologia, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Kleber Del-Claro
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Y. Harada
- Coordenação em Zoologia, Museu Paraense Emilio Goeldi, Belém, Pará, Brazil
| | - Karine S. Carvalho
- Laboratório de Ecologia, Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Bahia, Brazil
| | - Tathiana G. Sobrinho
- Laboratório de Sistemática e Ecologia de Insetos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus, Espírito Santos, Brazil
| | - Aline B. Moraes
- Prefeitura Municipal de Novo Hamburgo, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - André B. Vargas
- Centro Universitário de Volta Redonda, UniFOA, Volta Redonda, Rio de Janeiro, Brazil
| | - Helena Maura Torezan-Silingardi
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jorge Luiz P. Souza
- Instituto Nacional da Mata Atlântica, INMA, Santa Teresa, Espírito Santo, Brazil
| | - Tatianne Marques
- Laboratório de Ecologia Aplicada e Citogenética, Instituto Federal do Norte de Minas Gerais – IFNMG, Salinas, Minas Gerais, Brazil
| | - Thiago Izzo
- Laboratório de Ecologia de Comunidades, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Denise Lange
- Universidade Tecnológica Federal do Paraná, Santa Helena, Paraná, Brazil
| | - Iracenir A. Santos
- Centro de Formação Interdisciplinar, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Larissa Nahas
- Laboratório de Ecologia Comportamental e de Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Lucas Paolucci
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Stela A. Soares
- Secretaria Estadual de Educação de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Cinthia B. Costa-Milanez
- Departamento de Biologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Renata B. F. Campos
- Laboratório de Ecologia, Ambiente e Território, PPG Gestão Integrada do Território, Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil
| | - Ricardo Solar
- Centro de Síntese Ecológica e Conservação, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Frizzo
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Wesley Darocha
- Laboratório de Mirmecologia (CPDC), Centro de Pesquisa do Cacau (CEPEC), Ilhéus, Bahia, Brazil
- Laboratório de Ecologia de Insetos, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Tozetto L, Forrister DL, Duval M, Hays T, Garwood N, Castro RV, Lattke JE, Sendoya S, Longino JT. Army ant males lose seasonality at a site on the equator. Biotropica 2022. [DOI: 10.1111/btp.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Leonardo Tozetto
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | - Dale L. Forrister
- School of Biological Sciences The University of Utah Salt Lake City Utah USA
| | - Megan Duval
- School of Biological Sciences The University of Utah Salt Lake City Utah USA
| | - Tobias Hays
- School of Biological Sciences The University of Utah Salt Lake City Utah USA
| | - Nancy C. Garwood
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| | - Ronald Vargas Castro
- Texas A&M University Soltis Center San Juan de Peñas Blancas, San Ramón Costa Rica
| | - John E. Lattke
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | - Sebastian Sendoya
- Departamento de Ecologia, Zoologia e Genética Universidade Federal de Pelotas Pelotas Brazil
| | - John T. Longino
- School of Biological Sciences The University of Utah Salt Lake City Utah USA
| |
Collapse
|
11
|
Costa FP, Schrago CG, Mello B. Assessing the relative performance of fast molecular dating methods for phylogenomic data. BMC Genomics 2022; 23:798. [PMID: 36460948 PMCID: PMC9719170 DOI: 10.1186/s12864-022-09030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Advances in genome sequencing techniques produced a significant growth of phylogenomic datasets. This massive amount of data represents a computational challenge for molecular dating with Bayesian approaches. Rapid molecular dating methods have been proposed over the last few decades to overcome these issues. However, a comparative evaluation of their relative performance on empirical data sets is lacking. We analyzed 23 empirical phylogenomic datasets to investigate the performance of two commonly employed fast dating methodologies: penalized likelihood (PL), implemented in treePL, and the relative rate framework (RRF), implemented in RelTime. They were compared to Bayesian analyses using the closest possible substitution models and calibration settings. We found that RRF was computationally faster and generally provided node age estimates statistically equivalent to Bayesian divergence times. PL time estimates consistently exhibited low levels of uncertainty. Overall, to approximate Bayesian approaches, RelTime is an efficient method with significantly lower computational demand, being more than 100 times faster than treePL. Thus, to alleviate the computational burden of Bayesian divergence time inference in the era of massive genomic data, molecular dating can be facilitated using the RRF, allowing evolutionary hypotheses to be tested more quickly and efficiently.
Collapse
Affiliation(s)
- Fernanda P. Costa
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Carlos G. Schrago
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Beatriz Mello
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| |
Collapse
|
12
|
Sosiak CE, Borowiec ML, Barden P. An Eocene army ant. Biol Lett 2022; 18:20220398. [PMID: 36416032 PMCID: PMC9682434 DOI: 10.1098/rsbl.2022.0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Among social insects, army ants are exceptional in their voracious coordinated predation, nomadic life history and highly specialized wingless queens: the synthesis of these remarkable traits is referred to as the army ant syndrome. Despite molecular evidence that the army ant syndrome evolved twice during the mid-Cenozoic, once in the Neotropics and once in the Afrotropics, fossil army ants are markedly scarce, comprising a single known species from the Caribbean 16 Ma. Here we report the oldest army ant fossil and the first from the Eastern Hemisphere (EH), Dissimulodorylus perseus, preserved in Baltic amber dated to the Eocene. Using a combined morphological and molecular ultra conserved elements dataset spanning doryline lineages, we find that D. perseus is nested among extant EH army ants with affinities to Dorylus. Army ants are characterized by limited extant diversification throughout most of the Cenozoic; the discovery of D. perseus suggests an unexpected diversity of now-extinct army ant lineages in the Cenozoic, some of which were present in Continental Europe.
Collapse
Affiliation(s)
- Christine E. Sosiak
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Marek L. Borowiec
- Department of Agricultural Biology and C. P. Gillette Museum of Arthropod Diversity, Colorado State University, CO 80523, USA
| | - Phillip Barden
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
13
|
Baudier KM, Pavlic TP. Multi-level instrumentation of bivouac thermoregulation: current methods and future directions. ARTIFICIAL LIFE AND ROBOTICS 2022. [DOI: 10.1007/s10015-022-00759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Boudinot BE, Moosdorf OTD, Beutel RG, Richter A. Anatomy and evolution of the head of Dorylus helvolus (Formicidae: Dorylinae): Patterns of sex- and caste-limited traits in the sausagefly and the driver ant. J Morphol 2021; 282:1616-1658. [PMID: 34427942 DOI: 10.1002/jmor.21410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022]
Abstract
Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.
Collapse
Affiliation(s)
- Brendon Elias Boudinot
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Olivia Tikuma Diana Moosdorf
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Rolf Georg Beutel
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Adrian Richter
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| |
Collapse
|
15
|
Abstract
The mass raids of army ants are an iconic collective phenomenon, in which many thousands of ants spontaneously leave their nest to hunt for food, mostly other arthropods. While the structure and ecology of these raids have been relatively well studied, how army ants evolved such complex cooperative behavior is not understood. Here, we show that army ant mass raiding has evolved from a different form of cooperative hunting called group raiding, in which a scout directs a small group of ants to a specific target through chemical communication. We describe the structure of group raids in the clonal raider ant, a close relative of army ants in the subfamily Dorylinae. We find evidence that the coarse structure of group raids and mass raids is highly conserved and that all doryline ants likely follow similar behavioral rules for raiding. We also find that the evolution of army ant mass raiding occurred concurrently with expansions in colony size. By experimentally increasing colony size in the clonal raider ant, we show that mass raiding gradually emerges from group raiding without altering individual behavioral rules. This suggests that increasing colony size can explain the evolution of army ant mass raids and supports the idea that complex social behaviors may evolve via mechanisms that need not alter the behavioral interaction rules that immediately underlie the collective behavior of interest.
Collapse
|
16
|
Abstract
Identification of priority areas for conservation is crucial for the maintenance and protection of biodiversity, particularly in tropical forests where biodiversity continues to be lost at alarming rates. Surveys and research on umbrella species can provide efficient and effective approaches to identify potential areas for conservation at small geographical scales. Army ants of the genus Eciton are keystone species in neotropical forests due to their major role as top predators and due to the numerous vertebrate- and invertebrate associated species that depend upon their colonies for survival. These associates range from the iconic army ant-following birds to a wide range of arthropod groups, some of which have evolved intricate morphological, behavioural and/or chemical strategies to conceal their presence and integrate into the colony life. Furthermore, Eciton colonies require large forested areas that support a diverse leaf litter prey community and several field-based and genetic studies have demonstrated the negative consequences of forest fragmentation for the long-term maintenance of these colonies. Therefore, Eciton species will not only act as umbrella for their associates but also for many other species in neotropical forests, in particular for those that require a large extent of forest. This review summarises past and recent accounts of the main taxonomic groups found associated with Eciton colonies, as well research assessing the impact of forest fragmentation on this army ant, to encourage the adoption of Eciton army ants as umbrella species for the identification of priority areas for conservation and assessments of the effect of disturbance in neotropical forests.
Collapse
|
17
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest. Mol Phylogenet Evol 2020; 155:107036. [PMID: 33278587 DOI: 10.1016/j.ympev.2020.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been described for the genus, the best-known of which are replete workers, that store liquified food in their largely expanded crops and are colloquially referred to as "honeypots". Despite their interesting biology and ecological importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the current taxonomy presents an unsatisfactory systematic framework. We use ultraconserved elements to infer the evolutionary history of Myrmecocystus ants and provide a comprehensive, dated phylogenetic framework that clarifies the molecular systematics within the genus with high statistical support, reveals cryptic diversity, and reconstructs ancestral foraging activity. Using maximum likelihood, Bayesian and species tree approaches on a data set of 134 ingroup specimens (including samples from natural history collections and type material), we recover largely identical topologies that leave the position of only few clades uncertain and cover the intra- and interspecific variation of 28 of the 29 described and six undescribed species. In addition to traditional support values, such as bootstrap and posterior probability, we quantify genealogical concordance to estimate the effects of conflicting evolutionary histories on phylogenetic inference. Our analyses reveal that the current taxonomic classification of the genus is inconsistent with the molecular phylogenetic inference, and we identify cryptic diversity in seven species. Divergence dating suggests that the split between Myrmecocystus and its sister taxon Lasius occurred in the early Miocene. Crown group Myrmecocystus started diversifying about 14.08 Ma ago when the gradual aridification of the southwestern United States and northern Mexico led to formation of the American deserts and to adaptive radiations of many desert taxa.
Collapse
|
19
|
Chen X, Dong Z, Liu G, He J, Zhao R, Wang W, Peng Y, Li X. Phylogenetic analysis provides insights into the evolution of Asian fireflies and adult bioluminescence. Mol Phylogenet Evol 2019; 140:106600. [PMID: 31445200 DOI: 10.1016/j.ympev.2019.106600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Fireflies are one of the best-known examples of luminescent organisms. The limited geographic distribution and rarity of some firefly genera have hindered molecular phylogenetic analysis, resulting in uncertainty in regard to firefly phylogeny. Here, using genome skimming next-generation sequencing, we sequenced 23 Asian firefly species from 15 genera (Lampyridae: 14; Rhagophthalmidae: one) and assembled their mitochondrial genomes (mitogenomes) and nuclear ribosomal DNA (rDNA) repeat unit. The mitogenomes (including 15 mitochondrial genes: COX1-3, ATP6&8, ND1-6&4L, CYTB, 12S, and 16S) were recovered for almost all 23 species; furthermore, three regions of the nuclear rDNA repeat unit (18S, 28S, and 5.8S) were recovered for 22 out of the 23 species. The mitogenomes of 11 genera and 22 species as well as the complete rDNA from 22 species are reported here for the first time. Combined with previously published sequences of mitochondrial and rDNA coding regions, 166 species (170 populations with four overlapping in Lampyridae) were included in the current analyses. We selected different species groups and coding regions to infer phylogenies, and then employed tree certainty (TC) and internode certainty (IC) to quantify any phylogenetic incongruence. Phylogenetic analysis of 18 coding regions (15 mitochondrial genes and three regions of the nuclear rDNA repeat unit) from different species groups showed that the 144-species selection group (excluding 22 species outside Lampyridae) had relatively high TC (101.39). Further phylogenetic analysis of the 144 species using different coding regions indicated that the phylogeny of the 13 coding regions (10 mitochondrial genes: COX1-2, ATP6&8, ND1, ND4-5, CYTB, 12S and 16S; three rDNA regions: 18S, 5.8S, and 28S) demonstrated higher TC (103.02) than the phylogenies based on the 18 coding regions (TC = 101.39), conserved-regions (c-regions, i.e., 12S, 16S, COX1, 18S, and 28S) (TC = 95.11), or conserved-sites (c-sites, TC = 92.31) for the mitochondrial genes. In contrast, the c-sites strengthened the deeper nodes of the 144-species phylogeny compared to the c-regions. All of the 144-species phylogenies using different coding regions (except the c-regions) consistently recovered the monophyly of each of the three luminous families and their combination (Lampyridae, Rhagophthalmidae, and Phengodidae) with high IC support. Our phylogenetic analyses clarified the position of firefly genera Lamprigera, Vesta, Stenocladius, Pyrocoelia, Diaphanes, Abscondita, Pygoluciola, Emeia, Pristolycus, and Menghuoius. We also inferred the evolutionary pattern of adult bioluminescence in Lampyridae based on the phylogenies of 166 and 144 species. Our data suggest that the common ancestor of Lampyridae possessed adult bioluminescence, with a higher loss rate than gain rate of bioluminescence during its lineage evolution. Our results provide insight into Asian firefly phylogeny, and also enrich mitogenome and rDNA data resources for further study.
Collapse
Affiliation(s)
- Xing Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jinwu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yanqiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
20
|
Zhou YL, Ślipiński A, Ren D, Parker J. A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae). eLife 2019; 8:e44985. [PMID: 30990167 PMCID: PMC6467565 DOI: 10.7554/elife.44985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/11/2019] [Indexed: 01/14/2023] Open
Abstract
Complex interspecies relationships are widespread among metazoans, but the evolutionary history of these lifestyles is poorly understood. We describe a fossil beetle in 99-million-year-old Burmese amber that we infer to have been a social impostor of the earliest-known ant colonies. Promyrmister kistneri gen. et sp. nov. belongs to the haeteriine clown beetles (Coleoptera: Histeridae), a major clade of 'myrmecophiles'-specialized nest intruders with dramatic anatomical, chemical and behavioral adaptations for colony infiltration. Promyrmister reveals that myrmecophiles evolved close to the emergence of ant eusociality, in colonies of stem-group ants that predominate Burmese amber, or with cryptic crown-group ants that remain largely unknown at this time. The clown beetle-ant relationship has been maintained ever since by the beetles host-switching to numerous modern ant genera, ultimately diversifying into one of the largest radiations of symbiotic animals. We infer that obligate behavioral symbioses can evolve relatively rapidly, and be sustained over deep time.
Collapse
Affiliation(s)
- Yu-Lingzi Zhou
- Key Laboratory of Zoological Systematics and EvolutionInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Australian National Insect CollectionCSIROCanberraAustralia
| | - Adam Ślipiński
- Australian National Insect CollectionCSIROCanberraAustralia
| | - Dong Ren
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Joseph Parker
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
21
|
Prebus M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol Biol 2017; 17:250. [PMID: 29237395 PMCID: PMC5729518 DOI: 10.1186/s12862-017-1095-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Temnothorax (Formicidae: Myrmicinae) is a diverse genus of ants found in a broad spectrum of ecosystems across the northern hemisphere. These diminutive ants have long served as models for social insect behavior, leading to discoveries about social learning and inspiring hypotheses about the process of speciation and the evolution of social parasitism. This genus is highly morphologically and behaviorally diverse, and this has caused a great deal of taxonomic confusion in recent years. Past efforts to estimate the phylogeny of this genus have been limited in taxonomic scope, leaving the broader evolutionary patterns in Temnothorax unclear. To establish the monophyly of Temnothorax, resolve the evolutionary relationships, reconstruct the historical biogeography and investigate trends in the evolution of key traits, I generated, assembled, and analyzed two molecular datasets: a traditional multi-locus Sanger sequencing dataset, and an ultra-conserved element (UCE) dataset. Using maximum likelihood, Bayesian, and summary-coalescent based approaches, I analyzed 22 data subsets consisting of 103 ingroup taxa and a maximum of 1.8 million base pairs in 2485 loci. RESULTS The results of this study suggest an origin of Temnothorax at the Eocene-Oligocene transition, concerted transitions to arboreal nesting habits in several clades during the Oligocene, coinciding with ancient global cooling, and several convergent origins of social parasitism in the Miocene and Pliocene. As with other Holarctic taxa, Temnothorax has a history of migration across Beringia during the Miocene. CONCLUSIONS Temnothorax is corroborated as a natural group, and the notion that many of the historical subgeneric and species group concepts are artificial is reinforced. The strict form of Emery's Rule, in which a socially parasitic species is sister to its host species, is not well supported in Temnothorax.
Collapse
Affiliation(s)
- Matthew Prebus
- Department of Entomology & Nematology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|