1
|
Luo Z, Peng K, Liang Z, Cai S, Xu C, Li D, Hu Y, Zhou C, Liu Q. Mapping effective connectivity by virtually perturbing a surrogate brain. Nat Methods 2025; 22:1376-1385. [PMID: 40263586 DOI: 10.1038/s41592-025-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Effective connectivity (EC), which reflects the causal interactions between brain regions, is fundamental to understanding information processing in the brain; however, traditional methods for obtaining EC, which rely on neural responses to stimulation, are often invasive or limited in spatial coverage, making them unsuitable for whole-brain EC mapping in humans. Here, to address this gap, we introduce Neural Perturbational Inference (NPI), a data-driven framework for mapping whole-brain EC. NPI employs an artificial neural network trained to model large-scale neural dynamics, serving as a computational surrogate of the brain. By systematically perturbing all regions in the surrogate brain and analyzing the resulting responses in other regions, NPI maps the directionality, strength and excitatory/inhibitory properties of brain-wide EC. Validation of NPI on generative models with known ground-truth EC demonstrates its superiority over existing methods such as Granger causality and dynamic causal modeling. When applied to resting-state functional magnetic resonance imaging data across diverse datasets, NPI reveals consistent, structurally supported EC patterns. Furthermore, comparisons with cortico-cortical evoked potential data show a strong resemblance between NPI-inferred EC and real stimulation propagation patterns. By transitioning from correlational to causal understandings of brain functionality, NPI marks a stride in decoding the brain's functional architecture and facilitating both neuroscience studies and clinical applications.
Collapse
Affiliation(s)
- Zixiang Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kaining Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhichao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shengyuan Cai
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chenyu Xu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Dan Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yu Hu
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong SAR, China
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Zhen Y, Yang Y, Zheng Y, Wang X, Liu L, Zheng Z, Zheng H, Tang S. The heritability and structural correlates of resting-state fMRI complexity. Neuroimage 2024; 296:120657. [PMID: 38810892 DOI: 10.1016/j.neuroimage.2024.120657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
The complexity of fMRI signals quantifies temporal dynamics of spontaneous neural activity, which has been increasingly recognized as providing important insights into cognitive functions and psychiatric disorders. However, its heritability and structural underpinnings are not well understood. Here, we utilize multi-scale sample entropy to extract resting-state fMRI complexity in a large healthy adult sample from the Human Connectome Project. We show that fMRI complexity at multiple time scales is heritable in broad brain regions. Heritability estimates are modest and regionally variable. We relate fMRI complexity to brain structure including surface area, cortical myelination, cortical thickness, subcortical volumes, and total brain volume. We find that surface area is negatively correlated with fine-scale complexity and positively correlated with coarse-scale complexity in most cortical regions, especially the association cortex. Most of these correlations are related to common genetic and environmental effects. We also find positive correlations between cortical myelination and fMRI complexity at fine scales and negative correlations at coarse scales in the prefrontal cortex, lateral temporal lobe, precuneus, lateral parietal cortex, and cingulate cortex, with these correlations mainly attributed to common environmental effects. We detect few significant associations between fMRI complexity and cortical thickness. Despite the non-significant association with total brain volume, fMRI complexity exhibits significant correlations with subcortical volumes in the hippocampus, cerebellum, putamen, and pallidum at certain scales. Collectively, our work establishes the genetic basis and structural correlates of resting-state fMRI complexity across multiple scales, supporting its potential application as an endophenotype for psychiatric disorders.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China.
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; Key laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China; Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China; Zhongguancun Laboratory, Beijing 100094, China; Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China; PengCheng Laboratory, Shenzhen 518055, China; State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Mallaroni P, Mason NL, Kloft L, Reckweg JT, van Oorsouw K, Toennes SW, Tolle HM, Amico E, Ramaekers JG. Shared functional connectome fingerprints following ritualistic ayahuasca intake. Neuroimage 2024; 285:120480. [PMID: 38061689 DOI: 10.1016/j.neuroimage.2023.120480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The knowledge that brain functional connectomes are unique and reliable has enabled behaviourally relevant inferences at a subject level. However, whether such "fingerprints" persist under altered states of consciousness is unknown. Ayahuasca is a potent serotonergic psychedelic which produces a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and functional connectome (FC) idiosyncrasy. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed FCs showed reduced idiosyncrasy, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FC motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example of how individualised connectivity markers can be used to trace a subject's FC across altered states of consciousness.
Collapse
Affiliation(s)
- Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Lilian Kloft
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Kim van Oorsouw
- Department of Forensic Psychology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | | | | | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
4
|
Kristanto D, Hildebrandt A, Sommer W, Zhou C. Cognitive abilities are associated with specific conjunctions of structural and functional neural subnetworks. Neuroimage 2023; 279:120304. [PMID: 37536528 DOI: 10.1016/j.neuroimage.2023.120304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Cognitive neuroscience assumes that different mental abilities correspond to at least partly separable brain subnetworks and strives to understand their relationships. However, single-task approaches typically revealed multiple brain subnetworks to be involved in performance. Here, we chose a bottom-up approach of investigating the association between structural and functional brain subnetworks, on the one hand, and domain-specific cognitive abilities, on the other. Structural network was identified using machine-learning graph neural network by clustering anatomical brain properties measured in 838 individuals enroled in the WU-Minn Young Adult Human Connectome Project. Functional network was adapted from seven Resting State Networks (7-RSN). We then analyzed the results of 15 cognitive tasks and estimated five latent abilities: fluid reasoning (Gf), crystallized intelligence (Gc), memory (Mem), executive functions (EF), and processing speed (Gs). In a final step we determined linear associations between these independently identified ability and brain entities. We found no one-to-one mapping between latent abilities and brain subnetworks. Analyses revealed that abilities are associated with properties of particular combinations of brain subnetworks. While some abilities are more strongly associated to within-subnetwork connections, others are related with connections between multiple subnetworks. Importantly, domain-specific abilities commonly rely on node(s) as hub(s) to connect with other subnetworks. To test the robustness of our findings, we ran the analyses through several defensible analytical decisions. Together, the present findings allow a novel perspective on the distinct nature of domain-specific cognitive abilities building upon unique combinations of associated brain subnetworks.
Collapse
Affiliation(s)
- Daniel Kristanto
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany
| | - Werner Sommer
- Department of Psychology, Humboldt University at Berlin, Berlin, Germany; Department of Psychology, Zhejiang Normal University, Jin Hua, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Physics, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
5
|
Hull A, Morton JB. Activity-State Entropy: A Novel Brain Entropy Measure Based on Spatial Patterns of Activity. J Neurosci Methods 2023; 393:109868. [PMID: 37120138 DOI: 10.1016/j.jneumeth.2023.109868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Brain entropy is a measure of the complexity of brain activity that has been linked to various cognitive abilities. The measure is based on Shannon Entropy, a measure from Information Theory that quantifies the information capacity of a system from the probability distribution of its states. Most fMRI studies measure brain entropy at the voxel level as time-series entropy and assume that entropic time-series indicate complex large-scale spatiotemporal patterns of activity. New Method We developed a novel measure of brain entropy called Activity-State Entropy. The method quantifies entropy based on underlying patterns of coactivation identified using Principal Components Analysis. These patterns, termed eigenactivity states, combine in time-varying proportions. RESULTS We showed that Activity-State Entropy is sensitive to the complexity of the spatiotemporal patterns of activity in simulated fMRI data. We then applied this measure to real resting-state fMRI data and found that the eigenactivity states that explained the most variance in the data were comprised of large clusters of coactivating voxels, including clusters within Default Mode Network regions. More entropic brains were increasingly influenced by eigenactivity states comprised of smaller and more sparsely distributed clusters. Comparison to Existing Methods We compared Activity-State Entropy to Sample Entropy and Dispersion Entropy, two time-series entropy measures commonly used in neuroimaging research, and found all three measures were positively correlated. CONCLUSIONS Activity-State Entropy provides a measure of the spatiotemporal complexity of brain activity that complements time-series based measures of brain entropy.
Collapse
Affiliation(s)
- Adam Hull
- Undergraduate Program in Neuroscience, Western University, London, Canada, N6A 3K7.
| | - J Bruce Morton
- Department of Psychology, Western University, London, Canada, N6A 3K7.
| |
Collapse
|
6
|
Guan S, Wan D, Zhao R, Canario E, Meng C, Biswal BB. The complexity of spontaneous brain activity changes in schizophrenia, bipolar disorder, and ADHD was examined using different variations of entropy. Hum Brain Mapp 2022; 44:94-118. [PMID: 36358029 PMCID: PMC9783493 DOI: 10.1002/hbm.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adult attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCHZ), and bipolar disorder (BP) have common symptoms and differences, and the underlying neural mechanisms are still unclear. This article will thoroughly discuss the differences between ADHD, BP, and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and 34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in combination with three atlases (et al., the Brainnetome atlas, the Dosenbach atlas, the Power atlas) and seven entropies (et al., approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn), fuzzy entropy (FuEn), differential entropy (DiffEn), range entropy (RaEn), and dispersion entropy (DispEn)), as well as the prominent significant brain regions, in the hope of giving information that is more suitable for analyzing different diseases' entropy. First, the reliability (et al., intraclass correlation coefficient [ICC]) of seven kinds of entropy is calculated and analyzed by using the MSC dataset (10 subjects and 100 sessions in total) and simulation data; then, seven types of entropy and multiscale entropy expanded based on seven kinds of entropy are used to explore the differences and brain regions of ADHD, BP, and SCHZ relative to healthy subjects; and finally, by verifying the classification performance of the seven information entropies on ADHD, BP, and SCHZ, the effectiveness of the seven entropy methods is evaluated through these three methods. The core brain regions that affect the classification are given, and DiffEn performed best on ADHD, SaEn for BP, and RaEn for SCHZ.
Collapse
Affiliation(s)
- Sihai Guan
- Key Laboratory of Electronic and Information EngineeringState Ethnic Affairs Commission, College of Electronic and Information, Southwest Minzu UniversityChengduChina
| | - Dongyu Wan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Rong Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Edgar Canario
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina,Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
7
|
Kristanto D, Liu X, Sommer W, Hildebrandt A, Zhou C. What do neuroanatomical networks reveal about the ontology of human cognitive abilities? iScience 2022; 25:104706. [PMID: 35865139 PMCID: PMC9293763 DOI: 10.1016/j.isci.2022.104706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, cognitive psychology has come to a fair consensus about the human intelligence ontological structure. However, it remains an open question whether anatomical properties of the brain support the same ontology. The present study explored the ontological structure derived from neuroanatomical networks associated with performance on 15 cognitive tasks indicating various abilities. Results suggest that the brain-derived (neurometric) ontology partly agrees with the cognitive performance-derived (psychometric) ontology complemented with interpretable differences. Moreover, the cortical areas associated with different inferred abilities are segregated, with little or no overlap. Nevertheless, these spatially segregated cortical areas are integrated via denser white matter structural connections as compared with the general brain connectome. The integration of ability-related cortical networks constitutes a neural counterpart to the psychometric construct of general intelligence, while the consistency and difference between psychometric and neurometric ontologies represent crucial pieces of knowledge for theory building, clinical diagnostics, and treatment. Psychometric and neurometric cognitive ontologies are partly equivalent Ability-related brain areas are ontologically segregated with little to no overlap However, ability-related brain areas are densely interconnected by fiber tracts
Collapse
|
8
|
Weninger L, Srivastava P, Zhou D, Kim JZ, Cornblath EJ, Bertolero MA, Habel U, Merhof D, Bassett DS. Information content of brain states is explained by structural constraints on state energetics. Phys Rev E 2022; 106:014401. [PMID: 35974521 DOI: 10.1103/physreve.106.014401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Signal propagation along the structural connectome of the brain induces changes in the patterns of activity. These activity patterns define global brain states and contain information in accordance with their expected probability of occurrence. Being the physical substrate upon which information propagates, the structural connectome, in conjunction with the dynamics, determines the set of possible brain states and constrains the transition between accessible states. Yet, precisely how these structural constraints on state transitions relate to their information content remains unexplored. To address this gap in knowledge, we defined the information content as a function of the activation distribution, where statistically rare values of activation correspond to high information content. With this numerical definition in hand, we studied the spatiotemporal distribution of information content in functional magnetic resonance imaging (fMRI) data from the Human Connectome Project during different tasks, and report four key findings. First, information content strongly depends on cognitive context; its absolute level and spatial distribution depend on the cognitive task. Second, while information content shows similarities to other measures of brain activity, it is distinct from both Neurosynth maps and task contrast maps generated by a general linear model applied to the fMRI data. Third, the brain's structural wiring constrains the cost to control its state, where the cost to transition into high information content states is larger than that to transition into low information content states. Finally, all state transitions-especially those to high information content states-are less costly than expected from random network null models, thereby indicating the brains marked efficiency. Taken together, our findings establish an explanatory link between the information contained in a brain state and the energetic cost of attaining that state, thereby laying important groundwork for our understanding of large-scale cognitive computations.
Collapse
Affiliation(s)
- Leon Weninger
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52072 Aachen, Germany
| | - Pragya Srivastava
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dale Zhou
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jason Z Kim
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eli J Cornblath
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxwell A Bertolero
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52428 Jülich, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52072 Aachen, Germany
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
9
|
Liang J, Zhou C. Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Comput Biol 2022; 18:e1009848. [PMID: 35100254 PMCID: PMC8830719 DOI: 10.1371/journal.pcbi.1009848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes. The complexity and variability of brain dynamical activity range from neuronal spiking and neural avalanches to oscillatory local field potentials of local neural circuits in both spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are functionally and behaviorally relevant and are principal components of the underlying circuit organization. To more comprehensively clarify their neural mechanisms, we use a bottom-up approach to study the stimulus–response dynamics of neural circuits. Our model assumes the following key biologically plausible components: excitation–inhibition (E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits with E–I balance have a special dynamic sub-region, the critical region. Circuits around this region could account for the emergence of multilevel brain response patterns, both ongoing and stimulus-induced, observed in different experiments, including the reduction of trial-to-trial variability, effective modulation of gamma frequency, and preservation of criticality in the presence of a stimulus. We further analyze the corresponding nonlinear dynamical principles using a novel and highly generalizable semi-analytical mean-field theory. Our computational and theoretical studies explain the cross-level brain dynamical organization of spontaneous and evoked states in a more integrative manner.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Physics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Kobeleva X, López-González A, Kringelbach ML, Deco G. Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics. Front Neurosci 2021; 15:715861. [PMID: 34744605 PMCID: PMC8569182 DOI: 10.3389/fnins.2021.715861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
The brain rapidly processes and adapts to new information by dynamically transitioning between whole-brain functional networks. In this whole-brain modeling study we investigate the relevance of spatiotemporal scale in whole-brain functional networks. This is achieved through estimating brain parcellations at different spatial scales (100-900 regions) and time series at different temporal scales (from milliseconds to seconds) generated by a whole-brain model fitted to fMRI data. We quantify the richness of the dynamic repertoire at each spatiotemporal scale by computing the entropy of transitions between whole-brain functional networks. The results show that the optimal relevant spatial scale is around 300 regions and a temporal scale of around 150 ms. Overall, this study provides much needed evidence for the relevant spatiotemporal scales and recommendations for analyses of brain dynamics.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, University of Bonn, Bonn, Germany
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Ane López-González
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Wang R, Liu M, Cheng X, Wu Y, Hildebrandt A, Zhou C. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci U S A 2021; 118:e2022288118. [PMID: 34074762 PMCID: PMC8201916 DOI: 10.1073/pnas.2022288118] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diverse cognitive processes set different demands on locally segregated and globally integrated brain activity. However, it remains an open question how resting brains configure their functional organization to balance the demands on network segregation and integration to best serve cognition. Here we use an eigenmode-based approach to identify hierarchical modules in functional brain networks and quantify the functional balance between network segregation and integration. In a large sample of healthy young adults (n = 991), we combine the whole-brain resting state functional magnetic resonance imaging (fMRI) data with a mean-filed model on the structural network derived from diffusion tensor imaging and demonstrate that resting brain networks are on average close to a balanced state. This state allows for a balanced time dwelling at segregated and integrated configurations and highly flexible switching between them. Furthermore, we employ structural equation modeling to estimate general and domain-specific cognitive phenotypes from nine tasks and demonstrate that network segregation, integration, and their balance in resting brains predict individual differences in diverse cognitive phenotypes. More specifically, stronger integration is associated with better general cognitive ability, stronger segregation fosters crystallized intelligence and processing speed, and an individual's tendency toward balance supports better memory. Our findings provide a comprehensive and deep understanding of the brain's functioning principles in supporting diverse functional demands and cognitive abilities and advance modern network neuroscience theories of human cognition.
Collapse
Affiliation(s)
- Rong Wang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Xinhong Cheng
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Ying Wu
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany;
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong;
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Perpetuini D, Chiarelli AM, Filippini C, Cardone D, Croce P, Rotunno L, Anzoletti N, Zito M, Zappasodi F, Merla A. Working Memory Decline in Alzheimer's Disease Is Detected by Complexity Analysis of Multimodal EEG-fNIRS. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1380. [PMID: 33279924 PMCID: PMC7762102 DOI: 10.3390/e22121380] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is characterized by working memory (WM) failures that can be assessed at early stages through administering clinical tests. Ecological neuroimaging, such as Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests to support AD early diagnosis within clinical settings. Multimodal EEG-fNIRS could measure brain activity along with neurovascular coupling (NC) and detect their modifications associated with AD. Data analysis procedures based on signal complexity are suitable to estimate electrical and hemodynamic brain activity or their mutual information (NC) during non-structured experimental paradigms. In this study, sample entropy of whole-head EEG and frontal/prefrontal cortex fNIRS was evaluated to assess brain activity in early AD and healthy controls (HC) during WM tasks (i.e., Rey-Osterrieth complex figure and Raven's progressive matrices). Moreover, conditional entropy between EEG and fNIRS was evaluated as indicative of NC. The findings demonstrated the capability of complexity analysis of multimodal EEG-fNIRS to detect WM decline in AD. Furthermore, a multivariate data-driven analysis, performed on these entropy metrics and based on the General Linear Model, allowed classifying AD and HC with an AUC up to 0.88. EEG-fNIRS may represent a powerful tool for the clinical evaluation of WM decline in early AD.
Collapse
Affiliation(s)
- David Perpetuini
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Chiara Filippini
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Daniela Cardone
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Pierpaolo Croce
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Ludovica Rotunno
- Department of Medicine and Science of Ageing, University G. D’Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Nelson Anzoletti
- Department of Medicine and Science of Ageing, University G. D’Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Michele Zito
- Department of Medicine and Science of Ageing, University G. D’Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Filippo Zappasodi
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| | - Arcangelo Merla
- Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (A.M.C.); (C.F.); (D.C.); (P.C.); (F.Z.); (A.M.)
| |
Collapse
|
13
|
Zhang T, Wang H, Chen J, He E. Detecting Unfavorable Driving States in Electroencephalography Based on a PCA Sample Entropy Feature and Multiple Classification Algorithms. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1248. [PMID: 33287016 PMCID: PMC7711805 DOI: 10.3390/e22111248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 01/12/2023]
Abstract
Unfavorable driving states can cause a large number of vehicle crashes and are significant factors in leading to traffic accidents. Hence, the aim of this research is to design a robust system to detect unfavorable driving states based on sample entropy feature analysis and multiple classification algorithms. Multi-channel Electroencephalography (EEG) signals are recorded from 16 participants while performing two types of driving tasks. For the purpose of selecting optimal feature sets for classification, principal component analysis (PCA) is adopted for reducing dimensionality of feature sets. Multiple classification algorithms, namely, K nearest neighbor (KNN), decision tree (DT), support vector machine (SVM) and logistic regression (LR) are employed to improve the accuracy of unfavorable driving state detection. We use 10-fold cross-validation to assess the performance of the proposed systems. It is found that the proposed detection system, based on PCA features and the cubic SVM classification algorithm, shows robustness as it obtains the highest accuracy of 97.81%, sensitivity of 96.93%, specificity of 98.73% and precision of 98.75%. Experimental results show that the system we designed can effectively monitor unfavorable driving states.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; (T.Z.); (J.C.)
- College of Applied Technology, Shenyang University, Shenyang 110044, China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; (T.Z.); (J.C.)
| | - Jichi Chen
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; (T.Z.); (J.C.)
| | - Enqiu He
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
14
|
Keshmiri S. Entropy and the Brain: An Overview. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E917. [PMID: 33286686 PMCID: PMC7597158 DOI: 10.3390/e22090917] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks' information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks' information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain's capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
15
|
Keshmiri S. Stress Changes the Resting-State Cortical Flow of Information from Distributed to Frontally Directed Patterns. BIOLOGY 2020; 9:E236. [PMID: 32824879 PMCID: PMC7464349 DOI: 10.3390/biology9080236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
Despite converging evidence on the involvement of large-scale distributed brain networks in response to stress, the effect of stress on the components of these networks is less clear. Although some studies identify higher regional activities in response to stress, others observe an opposite effect in the similar regions. Studies based on synchronized activities and coactivation of these components also yield similar differing results. However, these differences are not necessarily contradictory once we observe the effect of stress on these functional networks in terms of the change in information processing capacity of their components. In the present study, we investigate the utility of such a shift in the analysis of the effect of stress on distributed cortical regions through quantification of the flow of information among them. For this purpose, we use the self-assessed responses of 216 individuals to stress-related questionnaires and systematically select 20 of them whose responses showed significantly higher and lower susceptibility to stress. We then use these 20 individuals' resting-state multi-channel electroencephalography (EEG) recordings (both Eyes-Closed (EC) and Eyes-Open (EO) settings) and compute the distributed flow of information among their cortical regions using transfer entropy (TE). The contribution of the present study is three-fold. First, it identifies that the stress-susceptibility is characterized by the change in flow of information in fronto-parietal brain network. Second, it shows that these regions are distributed bi-hemispherically and are sufficient to significantly differentiate between the individuals with high versus low stress-susceptibility. Third, it verifies that the high stress-susceptibility is markedly associated with a higher parietal-to-frontal flow of information. These results provide further evidence for the viewpoint in which the brain's modulation of information is not necessarily accompanied by the change in its regional activity. They further construe the effect of stress in terms of a disturbance that disrupts the flow of information among the brain's distributed cortical regions. These observations, in turn, suggest that some of the differences in the previous findings perhaps reflect different aspects of impaired distributed brain information processing in response to stress. From a broader perspective, these results posit the use of TE as a potential diagnostic/prognostic tool in identification of the effect of stress on distributed brain networks that are involved in stress-response.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
16
|
Keshmiri S. Comparative Analysis of the Permutation and Multiscale Entropies for Quantification of the Brain Signal Variability in Naturalistic Scenarios. Brain Sci 2020; 10:E527. [PMID: 32781789 PMCID: PMC7463830 DOI: 10.3390/brainsci10080527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
As alternative entropy estimators, multiscale entropy (MSE) and permutation entropy (PE) are utilized for quantification of the brain function and its signal variability. In this context, their applications are primarily focused on two specific domains: (1) the effect of brain pathology on its function (2) the study of altered states of consciousness. As a result, there is a paucity of research on applicability of these measures in more naturalistic scenarios. In addition, the utility of these measures for quantification of the brain function and with respect to its signal entropy is not well studied. These shortcomings limit the interpretability of the measures when used for quantification of the brain signal entropy. The present study addresses these limitations by comparing MSE and PE with entropy of human subjects' EEG recordings, who watched short movie clips with negative, neutral, and positive content. The contribution of the present study is threefold. First, it identifies a significant anti-correlation between MSE and entropy. In this regard, it also verifies that such an anti-correlation is stronger in the case of negative rather than positive or neutral affects. Second, it finds that MSE significantly differentiates between these three affective states. Third, it observes that the use of PE does not warrant such significant differences. These results highlight the level of association between brain's entropy in response to affective stimuli on the one hand and its quantification in terms of MSE and PE on the other hand. This, in turn, allows for more informed conclusions on the utility of MSE and PE for the study and analysis of the brain signal variability in naturalistic scenarios.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), 2-2 Hikaridai Seika-cho, Kyoto 619-02, Japan
| |
Collapse
|