1
|
Vincenot M, Poisbeau P, Morel-Ferland N, Dumas G, Léonard G. A 5000-year overview of the history of pain through ancient civilizations to modern pain theories. Pain Rep 2025; 10:e1241. [PMID: 40190783 PMCID: PMC11970827 DOI: 10.1097/pr9.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 04/09/2025] Open
Abstract
Pain and its management have been a predominant issue since the dawn of humanity. Pain has been the subject of much controversy and has constantly evolved across societies. The objective of this review is to trace the historical evolution of the concept of pain through the ages and to attempt to understand how modern theories of pain represent a legacy of ancestral knowledge passed down from culture to culture. We conducted a comprehensive review of primary and secondary sources across 6 major historical periods, including Pre-history, Antiquity, the Middle Ages, the Renaissance, the Modern, and Contemporary eras, using academic databases, specialized libraries, and historical archives. Results shows that during ancient civilizations, the understanding of pain oscillated between religious beliefs and medical advances. Antiquity societies made significant contributions to the understanding of pain mechanisms and management. Contrary to popular belief, significant advances were made during the Middle Ages despite the important impact of religion on the era's conceptualization of pain. During the Renaissance, the influence of religion waned, and secular medicine made significant progress. The development of pain theories peaked in the 19th century with technological advances. Long considered an expression of internal suffering, pain has fascinated humanity throughout history. The way pain has been perceived, understood, and treated has changed greatly over the centuries. This historical scientific review allows us to keep in mind that the vision we have of pain in Western society is predominantly based on the concrete heritage of ancient civilizations.
Collapse
Affiliation(s)
- Matthieu Vincenot
- CIUSSS de l'Estrie-CHUS, Research Center on Aging, Sherbrooke, Quebec, Canada
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierrick Poisbeau
- Cognitive and Adaptive Neuroscience Laboratory, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Nikolas Morel-Ferland
- Department of History, Faculty of Letters and Social Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Geneviève Dumas
- Department of History, Faculty of Letters and Social Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Léonard
- CIUSSS de l'Estrie-CHUS, Research Center on Aging, Sherbrooke, Quebec, Canada
- Université de Sherbrooke, Faculty of Medicine and Health Sciences, School of Rehabilitation, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Fauchon C, Binvignat M, Berenbaum F, Conaghan PG, Peyron R, Sellam J. Brain functional imaging contributions in osteoarthritis-related pain: A viewpoint. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100554. [PMID: 39720583 PMCID: PMC11667684 DOI: 10.1016/j.ocarto.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/23/2024] [Indexed: 12/26/2024] Open
Abstract
Objective Neuroimaging investigations are critical to provide a more direct assessment of brain disturbances associated with osteoarthritis (OA)-related pain, and to better understand its pathophysiology to develop new treatment strategies. This viewpoint aims to summarize the importance of the brain in OA pain. Method A European working group on pain in osteoarthritis GO-PAIN (Going Inside Osteoarthritis-related Pain Phenotyping) has been created to work on a global assessment of the OA-related pain. Relevant scientific literature was evaluated, summarized and discussed to expose advances in functional brain alterations related-to OA pain. Results Findings of neuroimaging studies are highly heterogenous and based on small sample size, but some key brain alterations associated with OA pain can be identified across experiments. A systematic literature review conducted by Hall and colleagues (2023) found lower activity, connectivity, and grey matter volume in the right anterior insula in patients with OA than in healthy controls. Other works also pointed out that activity of specific brain regions could serve as a potential surrogate biomarker, but several limitations and confounding factors needs to be addressed. Conclusions Brain functional imaging provides opportunities to accurately address an OA-related pain endophenotype. To encompass limitations and fill the gaps from the previous studies, we propose a blueprint for the next 5 years and stimulate ideas for others working in the field.
Collapse
Affiliation(s)
- Camille Fauchon
- University of Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Marie Binvignat
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| | - Philip G. Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roland Peyron
- Université Jean Monnet, CHU Saint-Etienne, Inserm UMR-1028, CRNL, NeuroPain, Saint-Etienne, France
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint-Antoine (CRSA) Inserm UMRS-938, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Lopes Alves R, Zortea M, Vicuña Serrano P, Laranjeira VDS, Franceschini Tocchetto B, Ramalho L, Fernanda da Silveira Alves C, Brugnera Tomedi R, Pereira de Almeida R, Machado Bruck S, Medeiros L, R. S. Sanches P, P. Silva D, Torres ILS, Fregni F, Caumo W. Modulation of neural networks and symptom correlated in fibromyalgia: A randomized double-blind multi-group explanatory clinical trial of home-based transcranial direct current stimulation. PLoS One 2024; 19:e0288830. [PMID: 39536019 PMCID: PMC11560039 DOI: 10.1371/journal.pone.0288830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) might modulate neural activity and promote neural plasticity in patients with fibromyalgia (FM). This multi-group randomized clinical trial compared home-based active tDCS (HB-a-tDCS) on the left dorsolateral prefrontal cortex (l-DLPFC) or home-based sham tDCS (HB-s-tDCS), and HB-a-tDCS or HB-s-tDCS on the primary motor cortex (M1) in the connectivity analyses in eight regions of interest (ROIs) across eight resting-state electroencephalography (EEG) frequencies. METHODS We included 48 women with FM, aged 30 to 65, randomly assigned to 2:1:2:1 to receive 20 sessions during 20 minutes of HB-a-tDCS 2mA or HB-s-tDCS, over l-DLPFC or M1, respectively. EEG recordings were obtained before and after treatment with eyes open (EO) and eyes closed (EC). RESULTS In the EC condition, comparing pre to post-treatment, the HB-a-tDCS on l-DLPFC decreased the lagged coherence connectivity in the delta frequency band between the right insula and left anterior cingulate cortex (ACC) (t = -3.542, p = .048). The l-DLPFC HB-a-tDCS compared to HB-s-tDCS decreased the lagged coherence connectivity in the delta frequency band between the right insula and left ACC (t = -4.000, p = .017). In the EO condition, the l-DLPFC HB-a-tDCS compared to M1 HB-s-tDCS increased the lagged coherence connectivity between the l-DLPFC and left ACC in the theta band (t = -4.059, p = .048). Regression analysis demonstrated that the HB-a-tDCS effect on the l-DLPFC was positively correlated with sleep quality. On the other hand, the HB-a-tDCS on l-DLPFC and HB-s-tDCS on M1 were positively correlated with pain catastrophizing. CONCLUSIONS These results show that HB-a-tDCS affects the neural connectivity between parts of the brain that control pain's emotional and attentional aspects, which are most noticeable at lower EEG frequencies in a rest state. This effect on neural oscillations could serve as a neural marker associated with its efficacy in alleviating fibromyalgia symptoms. CLINICAL TRIAL REGISTRATION identifier [NCT03843203].
Collapse
Affiliation(s)
- Rael Lopes Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maxciel Zortea
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Health School, University of Vale do Rio dos Sinos, São Leopoldo, Porto Alegre, Brazil
| | - Paul Vicuña Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vani dos Santos Laranjeira
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Betina Franceschini Tocchetto
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafaela Brugnera Tomedi
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Samara Machado Bruck
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Liciane Medeiros
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Paulo R. S. Sanches
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Danton P. Silva
- Laboratory of Biomedical Engineer, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Iraci L. S. Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, Massachusetts, United States of America
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Surgery, School of Medicine, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
5
|
Bastuji H, Cadic-Melchior A, Ruelle-Le Glaunec L, Magnin M, Garcia-Larrea L. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep. Eur J Neurosci 2024; 59:570-583. [PMID: 36889675 DOI: 10.1111/ejn.15958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre du Sommeil, Hospices Civils de Lyon, Bron, France
| | - Andéol Cadic-Melchior
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Lucien Ruelle-Le Glaunec
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre d'évaluation et de traitement de la douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
6
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
7
|
Guidolin D, Tortorella C, De Caro R, Agnati LF. A Self-Similarity Logic May Shape the Organization of the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 36:203-225. [PMID: 38468034 DOI: 10.1007/978-3-031-47606-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy.
| | | | | | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Borelli E, Benuzzi F, Ballotta D, Bandieri E, Luppi M, Cacciari C, Porro CA, Lui F. Words hurt: common and distinct neural substrates underlying nociceptive and semantic pain. Front Neurosci 2023; 17:1234286. [PMID: 37829724 PMCID: PMC10565001 DOI: 10.3389/fnins.2023.1234286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Recent studies have shown that processing semantic pain, such as words associated with physical pain, modulates pain perception and enhances activity in regions of the pain matrix. A direct comparison between activations due to noxious stimulation and processing of words conveying physical pain may clarify whether and to what extent the neural substrates of nociceptive pain are shared by semantic pain. Pain is triggered also by experiences of social exclusion, rejection or loss of significant others (the so-called social pain), therefore words expressing social pain may modulate pain perception similarly to what happens with words associated with physical pain. This event-related fMRI study aims to compare the brain activity related to perceiving nociceptive pain and that emerging from processing semantic pain, i.e., words related to either physical or social pain, in order to identify common and distinct neural substrates. Methods Thirty-four healthy women underwent two fMRI sessions each. In the Semantic session, participants were presented with positive words, negative pain-unrelated words, physical pain-related words, and social pain-related words. In the Nociceptive session, participants received cutaneous mechanical stimulations that could be either painful or not. During both sessions, participants were asked to rate the unpleasantness of each stimulus. Linguistic stimuli were also rated in terms of valence, arousal, pain relatedness, and pain intensity, immediately after the Semantic session. Results In the Nociceptive session, the 'nociceptive stimuli' vs. 'non-nociceptive stimuli' contrast revealed extensive activations in SI, SII, insula, cingulate cortex, thalamus, and dorsolateral prefrontal cortex. In the Semantic session, words associated with social pain, compared to negative pain-unrelated words, showed increased activity in most of the same areas, whereas words associated with physical pain, compared to negative pain-unrelated words, only activated the left supramarginal gyrus and partly the postcentral gyrus. Discussion Our results confirm that semantic pain partly shares the neural substrates of nociceptive pain. Specifically, social pain-related words activate a wide network of regions, mostly overlapping with those pertaining to the affective-motivational aspects of nociception, whereas physical pain-related words overlap with a small cluster including regions related to the sensory-discriminative aspects of nociception. However, most regions of overlap are differentially activated in different conditions.
Collapse
Affiliation(s)
- Eleonora Borelli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bandieri
- Oncology and Palliative Care Units, Civil Hospital Carpi, USL, Carpi, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Unit and Chair, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Cristina Cacciari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Fauchon C, Kim JA, El-Sayed R, Osborne NR, Rogachov A, Cheng JC, Hemington KS, Bosma RL, Dunkley BT, Oh J, Bhatia A, Inman RD, Davis KD. A Hidden Markov Model reveals magnetoencephalography spectral frequency-specific abnormalities of brain state power and phase-coupling in neuropathic pain. Commun Biol 2022; 5:1000. [PMID: 36131088 PMCID: PMC9492713 DOI: 10.1038/s42003-022-03967-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.
Collapse
Affiliation(s)
- Camille Fauchon
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kasey S Hemington
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, M5T 1W7, Canada
| | - Jiwon Oh
- Div of Neurology, Dept of Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Anuj Bhatia
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.,Department of Anesthesia and Pain Medicine, Toronto Western Hospital, and University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Robert D Inman
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
11
|
Hartig R, Karimi A, Evrard HC. Interconnected sub-networks of the macaque monkey gustatory connectome. Front Neurosci 2022; 16:818800. [PMID: 36874640 PMCID: PMC9978403 DOI: 10.3389/fnins.2022.818800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/24/2022] [Indexed: 02/18/2023] Open
Abstract
Macroscopic taste processing connectivity was investigated using functional magnetic resonance imaging during the presentation of sour, salty, and sweet tastants in anesthetized macaque monkeys. This examination of taste processing affords the opportunity to study the interactions between sensory regions, central integrators, and effector areas. Here, 58 brain regions associated with gustatory processing in primates were aggregated, collectively forming the gustatory connectome. Regional regression coefficients (or β-series) obtained during taste stimulation were correlated to infer functional connectivity. This connectivity was then evaluated by assessing its laterality, modularity and centrality. Our results indicate significant correlations between same region pairs across hemispheres in a bilaterally interconnected scheme for taste processing throughout the gustatory connectome. Using unbiased community detection, three bilateral sub-networks were detected within the graph of the connectome. This analysis revealed clustering of 16 medial cortical structures, 24 lateral structures, and 18 subcortical structures. Across the three sub-networks, a similar pattern was observed in the differential processing of taste qualities. In all cases, the amplitude of the response was greatest for sweet, but the network connectivity was strongest for sour and salty tastants. The importance of each region in taste processing was computed using node centrality measures within the connectome graph, showing centrality to be correlated across hemispheres and, to a smaller extent, region volume. Connectome hubs exhibited varying degrees of centrality with a prominent leftward increase in insular cortex centrality. Taken together, these criteria illustrate quantifiable characteristics of the macaque monkey gustatory connectome and its organization as a tri-modular network, which may reflect the general medial-lateral-subcortical organization of salience and interoception processing networks.
Collapse
Affiliation(s)
- Renée Hartig
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ali Karimi
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Henry C Evrard
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|