1
|
Simor P, Vékony T, Farkas BC, Szalárdy O, Bogdány T, Brezóczki B, Csifcsák G, Németh D. Mind Wandering during Implicit Learning Is Associated with Increased Periodic EEG Activity and Improved Extraction of Hidden Probabilistic Patterns. J Neurosci 2025; 45:e1421242025. [PMID: 40194844 PMCID: PMC12060634 DOI: 10.1523/jneurosci.1421-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 04/09/2025] Open
Abstract
Mind wandering, occupying 30-50% of our waking time, remains an enigmatic phenomenon in cognitive neuroscience. A large number of studies showed a negative association between mind wandering and attention-demanding (model-based) tasks in both natural settings and laboratory conditions. Mind wandering, however, does not seem to be detrimental for all cognitive domains and was observed to benefit creativity and problem-solving. We examined if mind wandering may facilitate model-free processes, such as probabilistic learning, which relies on the automatic acquisition of statistical regularities with minimal attentional demands. We administered a well-established implicit probabilistic learning task combined with thought probes in healthy adults (N = 37, 30 females). To explore the neural correlates of mind wandering and probabilistic learning, participants were fitted with high-density electroencephalography. Our findings indicate that probabilistic learning was not only immune to periods of mind wandering but was positively associated with it. Spontaneous, as opposed to deliberate mind wandering, was particularly beneficial for extracting the probabilistic patterns hidden in the visual stream. Cortical oscillatory activity in the low-frequency (slow and delta) range, indicative of covert sleep-like states, was associated with both mind wandering and improved probabilistic learning, particularly in the early stages of the task. Given the importance of probabilistic implicit learning in predictive processing, our findings provide novel insights into the potential cognitive benefits of task-unrelated thoughts in addition to shedding light on its neural mechanisms.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest 1075, Hungary
- Institute of Behavioral Sciences, Semmelweis University, Budapest 1085, Hungary
- IMéRA Institute for Advanced Studies of Aix-Marseille University, Marseille 13004, France
| | - Teodóra Vékony
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Bence C Farkas
- Institut du Psychotraumatisme de l'Enfant et de l'Adolescent, Conseil Départemental Yvelines et Hauts-de-Seine et Centre Hospitalier des Versailles, Versailles 78000, France
- UVSQ, Inserm, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Saclay, Versailles 78000, France
- LNC2, Département d'études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris 75005, France
| | - Orsolya Szalárdy
- Institute of Behavioral Sciences, Semmelweis University, Budapest 1085, Hungary
| | - Tamás Bogdány
- Institute of Education and Psychology at Szombathely, Eötvös Loránd University, Szombathely 9700, Hungary
| | - Bianka Brezóczki
- Institute of Psychology, Eötvös Loránd University, Budapest 1075, Hungary
- Doctoral School of Psychology, Eötvös Loránd University, Budapest 1075, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1075, Hungary
| | - Gábor Csifcsák
- Department of Psychology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Dezső Németh
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1071, Hungary
| |
Collapse
|
2
|
Vékony T, Farkas BC, Brezóczki B, Mittner M, Csifcsák G, Simor P, Németh D. Mind wandering enhances statistical learning. iScience 2025; 28:111703. [PMID: 39906558 PMCID: PMC11791256 DOI: 10.1016/j.isci.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
The human brain spends 30-50% of its waking hours engaged in mind-wandering (MW), a common phenomenon in which individuals either spontaneously or deliberately shift their attention away from external tasks to task-unrelated internal thoughts. Despite the significant amount of time dedicated to MW, its underlying reasons remain unexplained. Our pre-registered study investigates the potential adaptive aspects of MW, particularly its role in predictive processes measured by statistical learning. We simultaneously assessed visuomotor task performance as well as the capability to extract probabilistic information from the environment while assessing task focus (on-task vs. MW). We found that MW was associated with enhanced extraction of hidden, but predictable patterns. This finding suggests that MW may have functional relevance in human cognition by shaping behavior and predictive processes. Overall, our results highlight the importance of considering the adaptive aspects of MW, and its potential to enhance certain fundamental cognitive abilities.
Collapse
Affiliation(s)
- Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CRNS, Université Claude Bernard Lyon 1, 69500 Bron, France
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Bence C. Farkas
- UVSQ, INSERM, CESP, Université Paris-Saclay, 94807 Villejuif, France
- Institut du Psychotraumatisme de l’Enfant et de l’Adolescent, Conseil Départemental Yvelines et Hauts-de-Seine et Centre Hospitalier des Versailles, 78000 Versailles, France
- Centre de Recherche en Épidémiologie et en Santé des Populations, INSERM U1018, Université Paris-Saclay, Université Versailles Saint-Quentin, 94807 Paris, France
| | - Bianka Brezóczki
- Doctoral School of Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
- Institute of Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Matthias Mittner
- Department of Psychology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Gábor Csifcsák
- Department of Psychology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
- Institute of Behavioral Sciences, Semmelweis University, 1085 Budapest, Hungary
- IMéRA Institute for Advanced Studies of Aix-Marseille University, 13004 Marseille, France
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CRNS, Université Claude Bernard Lyon 1, 69500 Bron, France
- Gran Canaria Cognitive Research Center, Department of Education and Psychology, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, 1071 Budapest, Hungary
| |
Collapse
|
3
|
Schmid P, Reichert C, Knight RT, Dürschmid S. Differential contributions of the C1 ERP and broadband high-frequency activity to visual processing. J Neurophysiol 2025; 133:78-84. [PMID: 39589840 DOI: 10.1152/jn.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The high-frequency activity (HFA; 80-150 Hz) in human intracranial recordings shows a differential modulation to different degrees in contrast when stimuli are behaviorally relevant, indicating a feedforward process. However, the HFA is also significantly dominated by superficial layers and exhibits a peak before 200 ms, suggesting that it is more likely a feedback signal. Magnetoencephalographic (MEG) recordings are suited to reveal an HFA modulation similar to its modulation in intracranial recordings. This allows for noninvasive, direct comparison of HFA with the C1, an established measure for feedforward input to V1, to test whether HFA represents feedforward or rather feedback. In simultaneous recordings, we used the EEG-C1 event-related potential (ERP) component and MEG-HFA to define feedforward processing in visual cortices. C1 latency preceded the HFA peak modulation, which had a more sustained response. Furthermore, modulation parameters like onset, peak time, and peak amplitude were uncorrelated. Most importantly, the C1 but not HFA distinguished small task-irrelevant contrast differences in visual stimulation. These results highlight the differential roles for the C1 and HFA in visual processing with the C1 measuring feedforward discrimination ability and HFA indexing feedforward and feedback processing.NEW & NOTEWORTHY Whether the broadband high-frequency activity (HFA) represents exclusively feedforward or feedback processing remains unclear. In this study, we compared the response characteristics of the HFA-magnetoencephalographic (MEG) and the C1-EEG component to systematic contrast modulations of task-irrelevant visual stimulation. Our findings reveal that the more sustained HFA follows the C1 component and, unlike the C1, is not modulated by task-irrelevant contrast differences. This timing of the HFA modulation suggests that HFA encompasses both feedforward and feedback processing.
Collapse
Affiliation(s)
- Paul Schmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| | - Stefan Dürschmid
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States
| |
Collapse
|
4
|
Simor P, Polner B, Báthori N, Bogdány T, Sifuentes Ortega R, Peigneux P. Reduced REM and N2 sleep, and lower dream intensity predict increased mind-wandering. Sleep 2024; 47:zsad297. [PMID: 37976037 DOI: 10.1093/sleep/zsad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Mind-wandering is a mental state in which attention shifts from the present environment or current task to internally driven, self-referent mental content. Homeostatic sleep pressure seems to facilitate mind-wandering as indicated by studies observing links between increased mind-wandering and impaired sleep. Nevertheless, previous studies mostly relied on cross-sectional measurements and self-reports. We aimed to combine the accuracy of objective sleep measures with the use of self-reports in a naturalistic setting in order to examine if objective sleep parameters predict the tendency for increased mind-wandering on the following day. We used mobile sleep electroencephalographic (EEG) headbands and self-report scales over 7 consecutive nights in a group of 67 healthy participants yielding ~400 analyzable nights. Nights with more wakefulness and shorter REM and slow wave sleep were associated with poorer subjective sleep quality at the intraindividual level. Reduced REM and N2 sleep, as well as less intense dream experiences, predicted more mind-wandering the following day. Our micro-longitudinal study indicates that intraindividual fluctuations in the duration of specific sleep stages predict the perception of sleep quality as assessed in the morning, as well as the intensity of daytime mind-wandering the following hours. The combined application of sleep EEG assessments and self-reports over repeated assessments provides new insights into the subtle intraindividual, night-to-day associations between nighttime sleep and the next day's subjective experiences.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Bertalan Polner
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - Noémi Báthori
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics
| | - Tamás Bogdány
- Doctoral School of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
5
|
Song T, Xu L, Peng Z, Wang L, Dai C, Xu M, Shao Y, Wang Y, Li S. Total sleep deprivation impairs visual selective attention and triggers a compensatory effect: evidence from event-related potentials. Cogn Neurodyn 2023; 17:621-631. [PMID: 37265652 PMCID: PMC10229502 DOI: 10.1007/s11571-022-09861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have demonstrated the impairment of sustained attention due to total sleep deprivation (TSD). However, it remains unclear whether and how TSD affects the processing of visual selective attention. In the current study, 24 volunteers performed a visual search task before and after TSD over a period of 36 h while undergoing spontaneous electroencephalography. Paired-sample t-tests of behavioral performance revealed that, compared with baseline values, the participants showed lower accuracy and higher variance in response time in visual search tasks performed after TSD. Analysis of the event-related potentials (ERPs) showed that the mean amplitude of the N2-posterior-contralateral (N2pc) difference wave after TSD was less negative than that at baseline and the mean amplitude of P3 after TSD was more positive than that at baseline. Our findings suggest that TSD significantly attenuates attentional direction/orientation processing and triggers a compensatory effect in the parietal brain to partially offset the impairments. These findings provide new evidence and improve our understanding of the effects of sleep loss.
Collapse
Affiliation(s)
- Tao Song
- School of Psychology, Beijing Sport University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengmeng Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shijun Li
- Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Lin Y, Su Y. The concurrent and longitudinal impact of sleep on mind wandering in early adolescents. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2023; 33:431-446. [PMID: 36414409 DOI: 10.1111/jora.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/25/2023]
Abstract
Mind wandering refers to task-unrelated thoughts that can interfere with ongoing tasks and could be sleep-driven across childhood. The present study investigated the mechanisms of the association between early adolescents' sleep and mind wandering with emotional symptoms and executive function as potential mediators. A total of 257 early adolescents (baseline aged 9-13 years old; 131 boys) completed the questionnaires consisting of the Pittsburgh Sleep Quality Index, mind wandering, depression and anxiety symptoms, and executive function. Cross-sectional and longitudinal data revealed a sequential mediation pathway of emotional symptoms and executive function in the association between sleep and mind wandering. The mediating effect of emotional symptoms in the link between sleep quality and mind wandering was significant among boys but not girls.
Collapse
Affiliation(s)
- Yue Lin
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yanjie Su
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|