1
|
Saeed F, Siepker KL, Jang S, Shahdadian S, Liu H. Quantification and stimulation of human glymphatic dynamics: New features of Alzheimer's disease and effects of brain photobiomodulation. RESEARCH SQUARE 2025:rs.3.rs-6115809. [PMID: 40092434 PMCID: PMC11908353 DOI: 10.21203/rs.3.rs-6115809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A non-invasive device to measure the dynamics of cerebrospinal fluid (CSF) is highly desirable because CSF facilitates the cleaning of neurotoxic wastes in the brain. A better understanding of CSF dynamics helps promote healthy aging in older adults and to treat patients with neurological diseases. This study employed a multi-color optical method to quantify prefrontal CSF dynamics in two groups: (1) older adults with (n = 16) and without (n = 27) Alzheimer's disease and (2) young adults (n = 26) before and after prefrontal light stimulation. The results revealed that the coupling strengths between cerebral blood volume (CBV) and CSF were age-dependent and significantly higher in AD patients than in healthy controls. Prefrontal light stimulation significantly enhanced CBV-CSF coupling, suggesting improved CSF drainage. This study underscores the multi-color optical strategy as a unique tool for monitoring the interaction between CBV and CSF, as well as metabolic functions in the human brain, while demonstrating the therapeutic potential of brain light stimulation in treating neurodegenerative diseases involving CSF drainage dysfunction.
Collapse
|
2
|
Liu P, Yang X, Han F, Peng G, Li Q, Huang L, Wang L, Fan Y. Brain Activation Pattern Caused by Soft Rehabilitation Glove and Virtual Reality Scenes: A Pilot fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3848-3857. [PMID: 39418155 DOI: 10.1109/tnsre.2024.3482470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Clinical studies have proved significant improvements in hand motor function in stroke patients when assisted by robotic devices. However, there were few studies on neural activity changes in the brain during execution. This study aimed to investigate the brain activation pattern caused by soft rehabilitation glove and virtual reality scenes. Twenty healthy subjects and twenty stroke patients were recruited to complete three controlled trials: grasping passively with robotic glove assistance (RA), watching grasping movement video in virtual reality (VR), and the joint use of robotic glove and virtual reality (VRA). Neural activity in the prefrontal cortex, motor cortex and occipital lobe was synchronously collected by the functional near-infrared spectroscopy (fNIRS) device. Activation level and functional connectivity of these brain regions were subsequently calculated and statistically analyzed. For both groups, the VR and VRA tasks induced activation of larger cortical areas. Stroke group had higher average cortical activation in all three tasks compared to healthy group, especially in the prefrontal cortex ( [Formula: see text]). Functional connectivity was weaker in the stroke group than in the healthy group across most regions, but was significantly stronger across some regions of the right hemisphere. These findings suggest significant differences in activation patterns across three tasks. In addition, multi-sensory stimulation can promote functional communication between more brain regions in patients. It has potential for neuromodulation in rehabilitation training by setting up different sensory stimulation modalities.
Collapse
|
3
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. Sci Rep 2024; 14:10242. [PMID: 38702415 PMCID: PMC11068774 DOI: 10.1038/s41598-024-59879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
Affiliation(s)
- Sadra Shahdadian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
4
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
5
|
Sissons C, Saeed F, Carter C, Lee K, Kerr K, Shahdadian S, Liu H. Unilateral Mitochondrial-Hemodynamic Coupling and Bilateral Connectivity in the Prefrontal Cortices of Young and Older Healthy Adults. Bioengineering (Basel) 2023; 10:1336. [PMID: 38002460 PMCID: PMC10669330 DOI: 10.3390/bioengineering10111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
A recent study demonstrated that noninvasive measurements of cortical hemodynamics and metabolism in the resting human prefrontal cortex can facilitate quantitative metrics of unilateral mitochondrial-hemodynamic coupling and bilateral connectivity in infraslow oscillation frequencies in young adults. The infraslow oscillation includes three distinct vasomotions with endogenic (E), neurogenic (N), and myogenic (M) frequency bands. The goal of this study was to prove the hypothesis that there are significant differences between young and older adults in the unilateral coupling (uCOP) and bilateral connectivity (bCON) in the prefrontal cortex. Accordingly, we performed measurements from 24 older adults (67.2 ± 5.9 years of age) using the same two-channel broadband near-infrared spectroscopy (bbNIRS) setup and resting-state experimental protocol as those in the recent study. After quantification of uCOP and bCON in three E/N/M frequencies and statistical analysis, we demonstrated that older adults had significantly weaker bilateral hemodynamic connectivity but significantly stronger bilateral metabolic connectivity than young adults in the M band. Furthermore, older adults exhibited significantly stronger unilateral coupling on both prefrontal sides in all E/N/M bands, particularly with a very large effect size in the M band (>1.9). These age-related results clearly support our hypothesis and were well interpreted following neurophysiological principles. The key finding of this paper is that the neurophysiological metrics of uCOP and bCON are highly associated with age and may have the potential to become meaningful features for human brain health and be translatable for future clinical applications, such as the early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Claire Sissons
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Fiza Saeed
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Caroline Carter
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kathy Lee
- School of Social Work, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kristen Kerr
- School of Social Work, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sadra Shahdadian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. RESEARCH SQUARE 2023:rs.3.rs-3393702. [PMID: 37886539 PMCID: PMC10602070 DOI: 10.21203/rs.3.rs-3393702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin ( Δ [ H b O ] ) and redox-state cytochrome c oxidase ( Δ [ C C O ] ) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the PFC. Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
|
7
|
Xu G, Huo C, Yin J, Zhong Y, Sun G, Fan Y, Wang D, Li Z. Test-retest reliability of fNIRS in resting-state cortical activity and brain network assessment in stroke patients. BIOMEDICAL OPTICS EXPRESS 2023; 14:4217-4236. [PMID: 37799694 PMCID: PMC10549743 DOI: 10.1364/boe.491610] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 10/07/2023]
Abstract
Resting-state functional near infrared spectroscopy (fNIRS) scanning has attracted considerable attention in stroke rehabilitation research in recent years. The aim of this study was to quantify the reliability of fNIRS in cortical activity intensity and brain network metrics among resting-state stroke patients, and to comprehensively evaluate the effects of frequency selection, scanning duration, analysis and preprocessing strategies on test-retest reliability. Nineteen patients with stroke underwent two resting fNIRS scanning sessions with an interval of 24 hours. The haemoglobin signals were preprocessed by principal component analysis, common average reference and haemodynamic modality separation (HMS) algorithm respectively. The cortical activity, functional connectivity level, local network metrics (degree, betweenness and local efficiency) and global network metrics were calculated at 25 frequency scales × 16 time windows. The test-retest reliability of each fNIRS metric was quantified by the intraclass correlation coefficient. The results show that (1) the high-frequency band has higher ICC values than the low-frequency band, and the fNIRS metric is more reliable than at the individual channel level when averaged within the brain region channel, (2) the ICC values of the low-frequency band above the 4-minute scan time are generally higher than 0.5, the local efficiency and global network metrics reach high and excellent reliability levels after 4 min (0.5 < ICC < 0.9), with moderate or even poor reliability for degree and betweenness (ICC < 0.5), (3) HMS algorithm performs best in improving the low-frequency band ICC values. The results indicate that a scanning duration of more than 4 minutes can lead to high reliability of most fNIRS metrics when assessing low-frequency resting brain function in stroke patients. It is recommended to use the global correction method of HMS, and the reporting of degree, betweenness and single channel level should be performed with caution. This paper provides the first comprehensive reference for resting-state experimental design and analysis strategies for fNIRS in stroke rehabilitation.
Collapse
Affiliation(s)
- Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Congcong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiahui Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Yanbiao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoyu Sun
- Changsha Medical University, Changsha, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Daifa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
8
|
Shahdadian S, Wang X, Wanniarachchi H, Chaudhari A, Truong NCD, Liu H. Neuromodulation of brain power topography and network topology by prefrontal transcranial photobiomodulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac9ede. [PMID: 36317341 PMCID: PMC9795815 DOI: 10.1088/1741-2552/ac9ede] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Authors to whom any correspondence should be addressed,
| |
Collapse
|