1
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Chen J, Chen H, Wu Y, Meng J, Jin L. Parental exposure to CdSe/ZnS QDs affects cartilage development in rare minnow (Gobiocypris rarus) offspring. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109304. [PMID: 35257888 DOI: 10.1016/j.cbpc.2022.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Cartilage development is a sensitive process that is easily disturbed by environmental toxins. In this study, the toxicity of CdSe/ZnS quantum dots on the skeleton of the next generation (F1) was evaluated using rare minnows (Gobiocypris rarus) as model animals. Four-month-old sexually mature parental rare minnows (F0) were selected and treated with 0, 100, 200, 400 and 800 nmol/L CdSe/ZnS quantum dots for 4 days. Embryos of F1 generation rare minnows were obtained by artificial insemination. The results showed that with increasing maternal quantum dots exposure, the body length of F1 embryos decreased, the overall calcium content decreased, and the deformity and mortality rates increased. Alcian blue staining results showed that the lengths of the craniofacial mandible, mandibular arch length, mandibular width, and CH-CH and CH-PQ angles of larvae of rare minnows increased; histological hematoxylin-eosin staining further indicated that quantum dots affected the development of chondrocytes. Furthermore, high concentrations of CdSe/ZnS quantum dots inhibited the transcript expression of the bmp2b, bmp4, bmp6, runx2b, sox9a, lox1 and col2α1 genes. In conclusion, CdSe/ZnS quantum dots can affect the skeletal development of F1 generation embryos of rare minnows at both the individual and molecular levels, the damage to the craniofacial bone is more obvious, and the toxic effect of high concentrations of quantum dots (400 nmol/L and 800 nmol/L) is more significant.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
4
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Ding Y, Yang Y, Chen J, Chen H, Wu Y, Jin L. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109065. [PMID: 33915279 DOI: 10.1016/j.cbpc.2021.109065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
ZnSe/ZnS quantum dots (QDs) have excellent optical properties, but researchers have not clearly determined whether they cause harm to organisms. In the present study, the effect of ZnSe/ZnS QDs on the parents and offspring of rare minnow were evaluated for the first time. Exposure to ZnSe/ZnS QDs altered the testicular structure, caused sperm DNA damage and decreased sperm motility in males. They also suppressed the expression of reproduction-related genes, such as androgen receptor (Ar), DM-related transcription factor 1 (Dmrt1), estrogen receptor (Er), and X-ray repair cross complementing gene 1 (Xrcc1). Continued monitoring of the F1 generation revealed that the embryonic development of the F1 generation was abnormal and the growth index of the F1 generation of adult fish showed hormesis. A comet assay showed that the F1 generation still had DNA damage in the 400 and 800 nmol/L groups at 96 h post-fertilization (hpf). Thus, ZnSe/ZnS QDs damaged the reproductive system of the rare minnow, and this effect continued to the F1 generation.
Collapse
Affiliation(s)
- Yanhong Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yang Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|