1
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
2
|
Brescia S, Alexander-White C, Li H, Cayley A. Risk assessment in the 21st century: where are we heading? Toxicol Res (Camb) 2023; 12:1-11. [PMID: 36866215 PMCID: PMC9972812 DOI: 10.1093/toxres/tfac087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Reliance on animal tests for chemical safety assessment is increasingly being challenged, not only because of ethical reasons, but also because they procrastinate regulatory decisions and because of concerns over the transferability of results to humans. New approach methodologies (NAMs) need to be fit for purpose and new thinking is required to reconsider chemical legislation, validation of NAMs and opportunities to move away from animal tests. This article summarizes the presentations from a symposium at the 2022 Annual Congress of the British Toxicology Society on the topic of the future of chemical risk assessment in the 21st century. The symposium included three case-studies where NAMs have been used in safety assessments. The first case illustrated how read-across augmented with some in vitro tests could be used reliably to perform the risk assessment of analogues lacking data. The second case showed how specific bioactivity assays could identify an NAM point of departure (PoD) and how this could be translated through physiologically based kinetic modelling in an in vivo PoD for the risk assessment. The third case showed how adverse-outcome pathway (AOP) information, including molecular-initiating event and key events with their underlying data, established for certain chemicals could be used to produce an in silico model that is able to associate chemical features of an unstudied substance with specific AOPs or AOP networks. The manuscript presents the discussions that took place regarding the limitations and benefits of these new approaches, and what are the barriers and the opportunities for their increased use in regulatory decision making.
Collapse
Affiliation(s)
- Susy Brescia
- Health & Safety Executive, Chemicals Regulation Division, Redgrave Court, Merton Road, Bootle, Merseyside L20 7HS, UK
| | | | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Alex Cayley
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11, 5PS, UK
| |
Collapse
|
3
|
Ponting DJ, Burns MJ, Foster RS, Hemingway R, Kocks G, MacMillan DS, Shannon-Little AL, Tennant RE, Tidmarsh JR, Yeo DJ. Use of Lhasa Limited Products for the In Silico Prediction of Drug Toxicity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2425:435-478. [PMID: 35188642 DOI: 10.1007/978-1-0716-1960-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lhasa Limited have had a role in the in silico prediction of drug and other chemical toxicity for over 30 years. This role has always been multifaceted, both as a provider of predictive software such as Derek Nexus, and as an honest broker for the sharing of proprietary chemical and toxicity data. A changing regulatory environment and the drive for the Replacement, Reduction and Refinement (the 3Rs) of animal testing have led both to increased acceptance of in silico predictions and a desire for the sharing of data to reduce duplicate testing. The combination of these factors has led to Lhasa Limited providing a suite of products and coordinating numerous data-sharing consortia that do indeed facilitate a significant reduction in the testing burden that companies would otherwise be laboring under. Many of these products and consortia can be organized into workflows for specific regulatory use cases, and it is these that will be used to frame the narrative in this chapter.
Collapse
|
4
|
Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – A case study with aromatase inhibition. Reprod Toxicol 2022; 108:43-55. [DOI: 10.1016/j.reprotox.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
|
5
|
Stalford SA, Cayley AN, de Oliveira AAF. Employing an adverse outcome pathway framework for weight-of-evidence assessment with application to the ICH S1B guidance addendum. Regul Toxicol Pharmacol 2021; 127:105071. [PMID: 34737134 DOI: 10.1016/j.yrtph.2021.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Across industry, there is a paradigm shift occurring for carcinogenicity testing, with the focus moving from long term animal studies to alternative approaches. Based on the explorative work done in recent years, the International Council for Harmonization (ICH) recently published a draft addendum to the S1B guidance, which allows for a weight-of-evidence (WoE) assessment to be conducted based on data gathered throughout the pharmaceutical development process and literature to mitigate some testing in rodents if the body of evidence clearly shows undertaking an animal lifetime study would not add value to the risk assessment. While several alternative approaches already exist, and other new approach methodologies (NAMs) are being explored, all of which can contribute to this WoE, it is important that all the evidence can be combined in a meaningful and consistent way to reach a conclusion. Adverse outcome pathways have been advocated as a framework for organising evidence in an integrated approach to testing and assessment, which gives context to data and can aid reaching a conclusion as to the adverse outcome (AO). This approach can be combined with a reasoning methodology to give a prediction for an AO and applied to the factors which need to be considered for the ICH S1B WoE to predict for carcinogenicity. Using this approach to the WoE assessment, consistent, scientifically robust, and transparent calls can be made as to whether conducting an animal carcinogenicity study would add value to a human risk assessment and mitigate the need to run animal studies unnecessarily.
Collapse
Affiliation(s)
- Susanne A Stalford
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, United Kingdom.
| | - Alex N Cayley
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, United Kingdom
| | | |
Collapse
|
6
|
Wilm A, Garcia de Lomana M, Stork C, Mathai N, Hirte S, Norinder U, Kühnl J, Kirchmair J. Predicting the Skin Sensitization Potential of Small Molecules with Machine Learning Models Trained on Biologically Meaningful Descriptors. Pharmaceuticals (Basel) 2021; 14:ph14080790. [PMID: 34451887 PMCID: PMC8402010 DOI: 10.3390/ph14080790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of machine learning models for the prediction of the skin sensitization potential of small organic molecules have been reported and become available. These models generally perform well within their applicability domains but, as a result of the use of molecular fingerprints and other non-intuitive descriptors, the interpretability of the existing models is limited. The aim of this work is to develop a strategy to replace the non-intuitive features by predicted outcomes of bioassays. We show that such replacement is indeed possible and that as few as ten interpretable, predicted bioactivities are sufficient to reach competitive performance. On a holdout data set of 257 compounds, the best model (“Skin Doctor CP:Bio”) obtained an efficiency of 0.82 and an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of charge for academic research. The modeling strategies explored in this work are easily transferable and could be adopted for the development of more interpretable machine learning models for the prediction of the bioactivity and toxicity of small organic compounds.
Collapse
Affiliation(s)
- Anke Wilm
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
- HITeC e.V., 22527 Hamburg, Germany
| | - Marina Garcia de Lomana
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
| | - Conrad Stork
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
| | - Neann Mathai
- Computational Biology Unit (CBU), Department of Chemistry, University of Bergen, N-5020 Bergen, Norway;
| | - Steffen Hirte
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
| | - Ulf Norinder
- MTM Research Centre, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden;
- Department of Computer and Systems Sciences, Stockholm University, SE-16407 Kista, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jochen Kühnl
- Front End Innovation, Beiersdorf AG, 22529 Hamburg, Germany;
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (A.W.); (C.S.)
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (M.G.d.L.); (S.H.)
- Correspondence: ; Tel.: +43-1-4277-55104
| |
Collapse
|
7
|
Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, Villeneuve D, Barton-Maclaren TS, Meek B, Anghel C, Heghes C, Barber C, Perkins E, Leblanc J, Burtt J, Laakso H, Laurier D, Lazo T, Whelan M, Thomas R, Cool D. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol 2021; 97:431-441. [PMID: 33539251 PMCID: PMC10711570 DOI: 10.1080/09553002.2021.1884314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.cd/aops). Currently, AOPs have been considered predominantly in chemical safety but are relevant to radiation. In this context, the Nuclear Energy Agency's (NEA's) High-Level Group on Low Dose Research (HLG-LDR) is working to improve research co-ordination, including radiological research with chemical research, identify synergies between the fields and to avoid duplication of efforts and resource investments. To this end, a virtual workshop was held on 7 and 8 October 2020 with experts from the OECD AOP Programme together with the radiation and chemical research/regulation communities. The workshop was a coordinated effort of Health Canada, the Electric Power Research Institute (EPRI), and the Nuclear Energy Agency (NEA). The AOP approach was discussed including key issues to fully embrace its value and catalyze implementation in areas of radiation risk assessment. CONCLUSIONS A joint chemical and radiological expert group was proposed as a means to encourage cooperation between risk assessors and an initial vision was discussed on a path forward. A global survey was suggested as a way to identify priority health outcomes of regulatory interest for AOP development. Multidisciplinary teams are needed to address the challenge of producing the appropriate data for risk assessments. Data management and machine learning tools were highlighted as a way to progress from weight of evidence to computational causal inference.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | | | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Nathalie Delrue
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Francesco Marchetti
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michael Boyd
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
| | - Daniel Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN, USA
| | | | - Bette Meek
- McLaughlin Centre, University of Ottawa, Ottawa, Canada
| | | | | | | | - Edward Perkins
- US Army Engineer Research and Development Center Jackson, Vicksburg, MS, USA
| | - Julie Leblanc
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Burtt
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Holly Laakso
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ted Lazo
- Radiological Protection and Human Aspects of Nuclear Safety Division, OECD Nuclear Energy Agency, Paris, France
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Russell Thomas
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donald Cool
- Electric Power Research Institute, Charlotte, NC, USA
| |
Collapse
|