1
|
Ferreira Azevedo L, de Souza Rocha CC, Souza MCO, Machado ART, Devóz PP, Rocha BA, Antunes LMG, Uribe-Romo FJ, Campiglia AD, Barbosa F. High molecular weight polycyclic aromatic hydrocarbon (HMW-PAH) isomers: unveiling distinct toxic effects from cytotoxicity to oxidative stress-induced DNA damage. Arch Toxicol 2025; 99:679-687. [PMID: 39611947 DOI: 10.1007/s00204-024-03917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the most extensive classes of known carcinogenic and genotoxic compounds widely distributed across the globe. Particularly relevant to ecotoxicological studies is the possible presence of PAHs with molecular weight (MW) 302 Da. Since the toxicity of 302 Da PAHs differs significantly from isomer to isomer, understanding their relative toxicity is essential for assessing their potential risks to human health. This study investigates the toxic effects of micromolar concentrations of four HMW-PAHs isomers of MW = 302 Da, namely dibenzo(b,l)fluoranthene (DB(b,l)F), dibenzo(a,j)fluoranthene (DB(a,j)F), dibenzo(a,l)fluoranthene (DB(a,l)F) and naphtho(1-2j)fluoranthene (N(1-2j)F), upon exposure and metabolic activation in HepG2 cells. Appropriate assays were selected to investigate their potential to disrupt cellular viability and to induce cytotoxicity, apoptosis/necrosis, genotoxicity, and oxidative stress with DNA damage. After 48 h of exposure time, DB(a,l)F was the only isomer to reduce cellular viability in a concentration-dependent manner. In all cases, apoptosis was the main mechanism of HepG2 cell death, which could be induced by the significant DNA damage and an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct level formation. The highest concentrations of DB(a,l)F tested exhibited the greatest potential to induce HepG2 DNA damage and 8-OHdG formation. Altogether, these facts demonstrate that the distinct arrangements of the atoms in HMW-PAHs isomers can impact on their toxic potential and that DB(a,l)F was the most toxic isomer evaluated in this study. These results shed light on the importance to thoroughly characterize MW302 PAHs to substantiate their human and environmental risk assessments.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Cecilia Cristina de Souza Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marília Cristina Oliveira Souza
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Biomolecular Sciences, University of Sao Paulo, Av. do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Ana Rita Thomazela Machado
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Paula Pícoli Devóz
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Bruno Alves Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lusania Maria Greggi Antunes
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | | | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil.
| |
Collapse
|
2
|
Li X, Zhou Y, Luo L, Zheng S, Deng J, Luan T. Chlorinated Anthracenes Induced Pulmonary Immunotoxicity in 3D Coculture Spheroids Simulating the Lung Microenvironment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11923-11934. [PMID: 38918172 DOI: 10.1021/acs.est.4c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Chlorinated anthracenes (Cl-Ants), persistent organic pollutants, are widely detected in the environment, posing potential lung toxicity risks due to frequent respiratory exposure. However, direct evidence and a comprehensive understanding of their toxicity mechanisms are lacking. Building on our prior findings of Cl-Ants' immunotoxic risks, this study developed a three-dimensional coculture spheroid model mimicking the lung's immune microenvironment. The objective is to explore the pulmonary immunotoxicity and comprehend its mechanisms, taking into account the heightened immune reactivity and frequent lung exposure of Cl-Ants. The results demonstrated that Cl-Ants exposure led to reduced spheroid size, increased macrophage migration outward, lowered cell viability, elevated 8-OHdG levels, disturbed anti-infection balance, and altered cytokine production. Specifically, the chlorine substituent number correlates with the extent of disruption of spheroid indicators caused by Cl-Ants, with stronger immunotoxic effects observed in dichlorinated Ant compared to those in monochlorinated Ant. Furthermore, we identified critical regulatory genes associated with cell viability (ALDOC and ALDOA), bacterial response (TLR5 and MAP2K6), and GM-CSF production (CEBPB). Overall, this study offers initial in vitro evidence of low-dose Cl-PAHs' pulmonary immunotoxicity, advancing the understanding of Cl-Ants' structure-related toxicity and improving external toxicity assessment methods for environmental pollutants, which holds significance for future monitoring and evaluation.
Collapse
Affiliation(s)
- Xinyan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiluan Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Lu X, Yu M, Yang Y, Zhang X, Chen T, Lei B. G-Protein Coupled Receptor 1 Is Involved in Tetrachlorobisphenol A-Induced Inflammatory Response in Jurkat Cells. TOXICS 2024; 12:485. [PMID: 39058137 PMCID: PMC11281156 DOI: 10.3390/toxics12070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 μM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 μM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 μM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1β, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 μM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 μM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| |
Collapse
|
4
|
England E, Morris JW, Bussy C, Hancox JC, Shiels HA. The key characteristics of cardiotoxicity for the pervasive pollutant phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133853. [PMID: 38503207 DOI: 10.1016/j.jhazmat.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The key characteristic (KCs) framework has been used previously to assess the carcinogenicity and cardiotoxicity of various chemical and pharmacological agents. Here, the 12 KCs of cardiotoxicity are used to evaluate the previously reported cardiotoxicity of phenanthrene (Phe), a tricyclic polycyclic aromatic hydrocarbon (PAH), and major component of fossil fuel-derived air pollution. Phe is a semi-volatile pollutant existing in both the gas phase and particle phase through adsorption onto or into particulate matter (PM). Phe can translocate across the airways and gastrointestinal tract into the systemic circulation, enabling body-wide effects. Our evaluation based on a comprehensive literature review, indicates Phe exhibits 11 of the 12 KCs for cardiotoxicity. These include adverse effects on cardiac electromechanical performance, the vasculature and endothelium, immunomodulation and oxidative stress, and neuronal and endocrine control. Environmental agents that have similarly damaging effects on the cardiovascular system are heavily regulated and monitored, yet globally there is no air quality regulation specific for PAHs like Phe. Environmental monitoring of Phe is not the international standard with benzo[a]pyrene being frequently used as a proxy despite the two PAH species exhibiting significant differences in sources, concentration variations and toxic effects. The evidence summarised in this evaluation highlights the need to move away from proxied PAH measurements and develop a monitoring network capable of measuring Phe concentration. It also stresses the need to raise awareness amongst the medical community of the potential cardiovascular impact of PAH exposure. This will allow the production of mitigation strategies and possibly the development of new policies for the protection of the societal groups most vulnerable to cardiovascular disease.
Collapse
Affiliation(s)
- E England
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - J W Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - C Bussy
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - J C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Sadeghi A, Khazaeel K, Tabandeh MR, Nejaddehbashi F, Givi ME. Prenatal exposure to crude oil vapor reduces differentiation potential of rat fetal mesenchymal stem cells by regulating ERK1/2 and PI3K signaling pathways: Protective effect of quercetin. Reprod Toxicol 2023; 120:108440. [PMID: 37467934 DOI: 10.1016/j.reprotox.2023.108440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
It has been indicated that crude oil vapor (COV) induces tissue damage by several molecular mechanisms. Quercetin (QT) as an important component of food with antioxidant properties has a protective role against cell toxicity caused by many pollutants. However, data related to the adverse effects of crude oil vapor (COV) on stem cell fate and differentiation and the role of quercetin (QT) in protecting stem cells against the toxicity caused by these pollutants is very limited. This study aimed to explore the protective effect of QT against the adverse effects of COV on fetal mesenchymal stem cells (fMSCs) differentiation. Twenty-four pregnant Wistar rats were categorized into 4 groups including the control, COV, COV+QT, and QT. Rats were exposed to COV from gestational day (GD) 0-15 and received QT by gavage. The fMSCs were isolated from fetuses, and cell proliferation, differentiation potential, expression of osteogenesis and adipogenesis-related genes, and phosphorylation of PI3K and ERK1/2 signaling proteins were evaluated. The results showed that COV reduced the proliferation and differentiation of fMSCs through the activation of PI3K and ERK1/2 signaling pathways. Also, COV significantly decreased the expression of osteonectin, ALP, BMP-6, Runx-2, PPARγ, and CREBBP genes in differentiated cells. QT treatment increased the proliferation and differentiation of fMSCs in COV-exposed rats. In conclusion, our findings suggest that prenatal exposure to COV impaired fMSCs differentiation and QT reduced the adverse effects of COV by regulating ERK1/2 and PI3K signaling pathways.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Khazaeel
- Department of Basic Science, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoumeh Ezzati Givi
- Department of Basic Sciences, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Hong Z, Chen X, Wang L, Zhou X, He H, Zou G, Liu Q, Wang Y. ROCK2-RNA interaction map reveals multiple biological mechanisms underlying tumor progression in renal cell carcinoma. Hum Cell 2023; 36:1790-1803. [PMID: 37418232 DOI: 10.1007/s13577-023-00947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer in adults. Despite new therapeutic modalities, the outcomes for RCC patients remain unsatisfactory. Rho-associated coiled-coil forming protein kinase 2 (ROCK2) has previously been shown to be upregulated in RCC, and its expression was negatively correlated with patient survival. However, the precise molecular function of ROCK2 has remained unclear. Herein, using RNA-seq analysis of ROCK2 knockdown and control cells, we identified 464 differentially expressed genes, and 1287 alternative splicing events in 786-O RCC cells. Furthermore, mapping of iRIP-seq reads in 786-O cells showed a biased distribution at 5' UTR, intronic and intergenic regions. By comparing ROCK2-regulated alternative splicing and iRIP-seq data, we found 292 overlapping genes that are enriched in multiple tumorigenic pathways. Taken together, our work defined a complex ROCK2-RNA interaction map on a genomic scale in a human RCC cell line, which deepens our understanding of the molecular function of ROCK2 in cancer development.
Collapse
Affiliation(s)
- Zhengdong Hong
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuexin Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lei Wang
- School of Pharmacy, Nanchang Medical College, Nanchang, China
- Jiangxi Health Vocational College, Nanchang, China
| | - Xiaocheng Zhou
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haowei He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gaode Zou
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingnan Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Pantzke J, Koch A, Zimmermann EJ, Rastak N, Offer S, Bisig C, Bauer S, Oeder S, Orasche J, Fiala P, Stintz M, Rüger CP, Streibel T, Di Bucchianico S, Zimmermann R. Processing of carbon-reinforced construction materials releases PM 2.5 inducing inflammation and (secondary) genotoxicity in human lung epithelial cells and fibroblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104079. [PMID: 36796551 DOI: 10.1016/j.etap.2023.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Jana Pantzke
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Arne Koch
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Petra Fiala
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Michael Stintz
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
9
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Ma J, Zhu Z, Du S, Zhang D, Li X, Zheng Q, Shen J, Xiao L, Wu X, Chen Y, Ji J, Lu S. Polycyclic aromatic hydrocarbons in commercial tea from China and implications for human exposure. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Li Y, Ding Q, Gao J, Li C, Hou P, Xu J, Cao K, Hu M, Cheng L, Wang X, Yang X. Novel mechanisms underlying inhibition of inflammation-induced angiogenesis by dexamethasone and gentamicin via PI3K/AKT/NF-κB/VEGF pathways in acute radiation proctitis. Sci Rep 2022; 12:14116. [PMID: 35982137 PMCID: PMC9388498 DOI: 10.1038/s41598-022-17981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Acute radiation proctitis (ARP) is one of the most common complications of pelvic radiotherapy attributed to radiation exposure. The mechanisms of ARP are related to inflammation, angiogenesis, and so on. In this study we evaluated the effect of dexamethasone (DXM) combined with gentamicin (GM) enema on ARP mice, and explored its possible mechanisms by transcriptome sequencing, western blot and immunohistochemistry. C57BL/6 mice were randomly divided into 3 groups: healthy control group, ARP model group, and DXM + GM enema treatment group. ARP mice were established by using a single 6 MV X-ray dose of 27 Gy pelvic local irradiation. Transcriptome sequencing results showed that 979 genes were co-upregulated and 445 genes were co-downregulated in ARP mice compared to healthy mice. According to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, we firstly found that PI3K/AKT/NF-κB/VEGF pathways were mostly correlated with the inflammation-induced angiogenesis in ARP mice. PI3K/AKT pathway leads to the activation of NF-κB, which promotes the transcription of VEGF and Bcl-2. Interestingly, symptoms and pathological changes of ARP mice were ameliorated by DXM + GM enema treatment. DXM + GM enema inhibited inflammation by downregulating NF-κB and upregulating AQP3, as well as inhibited angiogenesis by downregulating VEGF and AQP1 in ARP mice. Moreover, DXM + GM enema induced apoptosis by increasing Bax and suppressing Bcl-2. The novel mechanisms may be related to the downregulation of PI3K/AKT/NF-κB/VEGF pathways.
Collapse
Affiliation(s)
- Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qin Ding
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jinsheng Gao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.,Ping An Healthcare and Technology Company Limited, Shanghai, 200032, China
| | - Chunxia Li
- Department of Geriatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Pengxiao Hou
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Jie Xu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Kaiqi Cao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Min Hu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Lin Cheng
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Xixing Wang
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.
| | - Xiaoling Yang
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
12
|
Huang Y, Huang Y, Wang H, Zhang H, Shi L, Li C, Li X, Zeng Y, Liu Y, Wu M, Wang J, Wang J. The effect of low molecular weight-polycyclic aromatic hydrocarbons responsive hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 circuit on inflammatory response of A549 cells via the PI3K/AKT pathway and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2022; 37:2005-2018. [PMID: 35475590 DOI: 10.1002/tox.23546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is widely recognized as an essential inducer of epithelial-mesenchymal transition (EMT). Meanwhile, competitive endogenous RNA (ceRNA) has been involved in a variety of disease processes. Therefore, the aim of the current study is to explore the regulation of ceRNA in the PI3K/AKT pathway and EMT mechanism in inflammatory response caused by low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs). The A549 cells were treated with an equal mixture of phenanthrene (Phe) and fluorene (Flu), and total RNA was extracted for transcriptome sequencing. The target regulation of ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 was further determined for mechanism study. The mixture of Phe and Flu significantly upregulated the expressions of hsa_circ_0039929 and FGF2, down-regulated hsa-miR-15b-3p_R-1, activated the PI3K/AKT pathway and promoted EMT. Mechanically, the overexpression of hsa-miR-15b-3p_R-1 inhibited the expressions of hsa_circ_0039929 and FGF2, reversed the activation of PI3K/AKT signaling pathway by LMW-PAHs, and blocked the occurrence of EMT progression. Furthermore, knockdown of hsa_circ_0039929 could promote the levels of hsa-miR-15b-3p_R-1, while inhibit the expression of FGF2. The effects of hsa_circ_0039929 knockdowns on PI3K/AKT pathways and EMT progress resembled the hsa-miR-15b-3p_R-1 overexpression. All above suggested that ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 played an important role in the inflammation and EMT caused by LMW-PAHs.
Collapse
Affiliation(s)
- Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yamin Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection Control, Gansu Province Hospital, Lanzhou, China
| | - Lei Shi
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangli Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minghua Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jingyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
He J, Pang Q, Huang C, Xie J, Hu J, Wang L, Wang C, Meng L, Fan R. Environmental dose of 16 priority-controlled PAHs mixture induce damages of vascular endothelial cells involved in oxidative stress and inflammation. Toxicol In Vitro 2021; 79:105296. [PMID: 34896602 DOI: 10.1016/j.tiv.2021.105296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have shown that cardiovascular diseases caused by PM2.5 pollution account for the second death rate in China. Polycyclic aromatic hydrocarbons (PAHs) are one important group of persistent organic pollutants absorbed on PM2.5. Though individual PAH is related to vascular disease, the relationship between environmental PAHs exposure and vascular damages is still unclear. To explore the effect of PAHs on blood vessel, human umbilical vein endothelial cells (HUVECs) are treated with 16 priority-controlled PAHs at various concentrations to study their cytotoxicity and morphological alteration. Results showed that, after 48 h treatment, PAHs mixture generally attenuated the ability of wound healing, transwell migration and tube formation of HUVECs (p < 0.01) except for 1 × PAHs in transwell migration. Moreover, PAHs increased the levels of ROS and 8-hydroxy-2'-deoxyguanosine (p < 0.05), indicating that it exceeded the scavenging ability of superoxide dismutase activity. However, PAHs mixture did not increase apoptosis rate, which may be attribute to the difference of PAH concentration and composition between this study and previous reports. Downstream signaling cascades significantly and generally upregulated the relative expression of proteins in Nrf2/HO-1 and NF-ƙB/TNF-α pathway with the activation of oxidative stress, including HO-, TNF-α and Nrf2. In summary, this study suggests that environmental mixture of 16 priority-controlled PAHs can induce the damages of vascular endothelial cells involved in cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaqi Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jindian Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|