1
|
Kirkland D, Burzlaff A, Czich A, Doak SH, Fowler P, Pfuhler S, Stankowski LF. Updated assessment of the genotoxic potential of titanium dioxide based on reviews of in vitro comet, mode of action and cellular uptake studies, and recent publications. Regul Toxicol Pharmacol 2024; 154:105734. [PMID: 39491583 DOI: 10.1016/j.yrtph.2024.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In 2021 the European Food Safety Authority (EFSA) concluded that "A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out.". A detailed review of the genotoxicity of titanium dioxide (TiO2) was subsequently published by Kirkland et al. (2022) using a comprehensive weight of evidence (WoE) approach in which test systems and endpoints were allocated different levels of relevance. At that time only 34 publications met the reliability and quality criteria for being most relevant in the evaluation of genotoxicity, and based on these it was concluded that the existing evidence did not support a direct DNA damaging mechanism for TiO2. Recently a number of regulatory opinions have been published, in which papers were cited that described in vitro DNA damage (mainly comet), mode of action, and cellular uptake studies that were not discussed in Kirkland et al. (2022). Furthermore, a number of additional papers have been published recently or have been identified from the regulatory opinions as a result of using extended search criteria. A total of 70 publications not previously reviewed in Kirkland et al. (2022) have been reviewed here, and again show that the published data on the genotoxicity of TiO2 are inconsistent, often of poor quality, and in some cases difficult to interpret. The cellular uptake studies show some evidence of cytoplasmic uptake, particularly in cells treated in vitro, but there is no convincing evidence of nuclear uptake. In terms of genotoxicity, the conclusions of Kirkland et al. (2022) that existing evidence does not support a direct DNA damaging mechanism for titanium dioxide (including nano forms), and that the main mechanism leading to TiO2 genotoxicity is most likely indirect damage to DNA through generation of reactive oxygen species (ROS), are still valid.
Collapse
Affiliation(s)
| | - Arne Burzlaff
- EBRC Consulting GmbH, Kirchhorster Str. 27, 30659, Hannover, Germany
| | | | - Shareen H Doak
- Swansea University Medical School, Swansea, SA2 8PP, Wales, UK
| | - Paul Fowler
- FSTox Consulting Ltd., Northamptonshire, UK.
| | - Stefan Pfuhler
- Global Product Stewardship, Procter & Gamble, Mason, OH, 45040, USA
| | | |
Collapse
|
2
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Riccio BVF, Meneguin AB, Baveloni FG, de Antoni JA, Robusti LMG, Gremião MPD, Ferrari PC, Chorilli M. Biopharmaceutical and nanotoxicological aspects of cyclodextrins for non-invasive topical treatments: A critical review. J Appl Toxicol 2023; 43:1410-1420. [PMID: 36579752 DOI: 10.1002/jat.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, β-, and γ-cyclodextrins, each with its own particularities. They can undergo surface modifications to improve their performances. Furthermore, their drug inclusion complexes can be made by various methods, including lyophilization, spray drying, magnetic stirring, kneading, and others. Cyclodextrins can solve several problems in drug stability when incorporated into dosage forms (including tablets, gels, films, nanoparticles, and suppositories) and allow better topical biological effects of drugs at administration sites such as skin, eyeballs, and oral, nasal, vaginal, and rectal cavities. However, as they are nanostructured systems and some of them can cause mild toxicity depending on the application site, they must be evaluated for their nanotoxicology and nanosafety aspects. Moreover, there is evidence that they can cause severe ototoxicity, killing cells from the ear canal even when applied by other administration routes. Therefore, they should be avoided in otologic administration and should have their permeation/penetration profiles and the in vivo hearing system integrity evaluated to certify that they will be safe and will not cause hearing loss.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Franciele Garcia Baveloni
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Leda Maria Gorla Robusti
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|