1
|
Delaunois A, Cardenas A, de Haro T, Gerets HHJ, Gryshkova V, Hebeisen S, Korlowski C, Laleu B, Lowe MA, Valentin JP. Deconvoluting and derisking QRS complex widening to improve cardiac safety profile of novel plasmepsin X antimalarials. Toxicol Sci 2024; 201:321-330. [PMID: 38976647 DOI: 10.1093/toxsci/kfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Quinoline-related antimalarial drugs have been associated with cardiotoxicity risk, in particular QT prolongation and QRS complex widening. In collaboration with Medicines for Malaria Venture, we discovered novel plasmepsin X (PMX) inhibitors for malaria treatment. The first lead compounds tested in anesthetized guinea pigs (GPs) induced profound QRS widening, although exhibiting weak inhibition of NaV1.5-mediated currents in standard patch clamp assays. To understand the mechanism(s) underlying QRS widening to identify further compounds devoid of such liability, we established a set of in vitro models including CaV1.2, NaV1.5 rate-dependence, and NaV1.8 patch clamp assays, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), and Langendorff-perfused isolated GP hearts. Six compounds were tested in all models including anesthetized GP, and 8 additional compounds were tested in vitro only. All compounds tested in anesthetized GP and isolated hearts showed a similar cardiovascular profile, consisting of QRS widening, bradycardia, negative inotropy, hypotension, and for some, QT prolongation. However, a left shift of the concentration-response curves was noted from in vitro to in vivo GP data. When comparing in vitro models, there was a good consistency between decrease in sodium spike amplitude in hiPSC-CM and QRS widening in isolated hearts. Patch clamp assay results showed that the QRS widening observed with PMX inhibitors is likely multifactorial, primarily due to NaV1.8 and NaV1.5 rate-dependent sodium blockade and/or calcium channel-mediated mechanisms. In conclusion, early de-risking of QRS widening using a set of different in vitro assays allowed to identify novel PMX inhibitors with improved cardiac safety profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benoit Laleu
- MMV Medicines for Malaria Venture, ICC, 1215 Geneva, Switzerland
| | | | | |
Collapse
|
2
|
Pawluk E, Delaunois A, Gamboa B, Valentin JP. Comparison of electrocardiogram and blood pressure recording methods in non-rodent toxicology studies: A retrospective analysis. J Pharmacol Toxicol Methods 2024; 128:107537. [PMID: 38955286 DOI: 10.1016/j.vascn.2024.107537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Our study retrospectively examines 51 non-rodent general toxicology studies conducted over the past 8 years to ascertain the influence of recording methodologies on baseline cardiovascular (CV) parameters and statistical sensitivity. Specifically, our work aims to evaluate the frequency of cardiovascular parameter recording categorized by therapeutic modality and study type, to assess the variability in these parameters based on measurement techniques, and to determine the sample sizes needed for detecting relevant changes in heart rate (HR), blood pressure (BP), and QTc interval in non-human primate (NHP) studies. Results indicate that electrocardiogram (ECG) measurements in dogs and NHP were recorded in 63% of studies, combined with BP recording in 18% of studies, while BP was never recorded alone. Trend analysis reveals a decline in the utilisation of restraint-based methods for ECG measurements post-2017, to the benefit of telemetry-based recordings, particularly Jacketed External Telemetry (JET). There was a marked difference in baseline values, with restraint-based methods showing significantly higher HR and QTc values compared to JET, likely linked to animal stress. Further analysis suggests an unrealistic and unethical sample size requirement in NHP studies for detecting biologically meaningful CV parameter changes using restraint-based methods, while JET methods necessitate significantly smaller sample sizes. This retrospective study indicates a notable shift from snapshots short-duration, restraint-based methods towards telemetry approaches over the recent years, especially with an increased usage of implanted telemetry. The transition contributes to potential consensus within industry or regulatory frameworks for optimal practices in assessing ECG, HR, and BP in general toxicology studies.
Collapse
Affiliation(s)
- Emma Pawluk
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium.
| | - Annie Delaunois
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | - Bastien Gamboa
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium
| | | |
Collapse
|
3
|
Valentin JP, Sibony A, Rosseels ML, Delaunois A. "Appraisal of state-of-the-art" The 2021 Distinguished Service Award of the Safety Pharmacology Society: Reflecting on the past to tackle challenges ahead. J Pharmacol Toxicol Methods 2023; 123:107269. [PMID: 37149063 DOI: 10.1016/j.vascn.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Alicia Sibony
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Marie-Luce Rosseels
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Annie Delaunois
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| |
Collapse
|
4
|
Baldrick P. Core battery safety pharmacology testing - An assessment of its utility in early drug development. J Pharmacol Toxicol Methods 2021; 109:107055. [PMID: 33813006 DOI: 10.1016/j.vascn.2021.107055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Requirements for safety pharmacology testing have been in place since the issue of initial regulatory guidance over 20 years ago. An evaluation of such testing, supporting first clinical entry of 105 small molecule drug candidates over the last decade, showed that a "core battery" of in vitro electrophysiological (hERG), conscious non-rodent telemetry cardiovascular, rodent central nervous system (CNS) (modified Irwin's or functional observational battery [FOB] test) and respiratory function (plethysmography) studies was performed. Routine use of the latter 2 studies appears to have limited utility, with only 21% and 28% of studies, respectively, giving findings of which none were identified as of obvious concern to moving the affected drugs into the clinic. The use of a stand-alone hERG assay does not appear to be particular sensitive in predicting proarrythmic risk as a tool by itself. Telemetry study testing had utility especially for identifying effects on QTc interval (about 10% of studies), resulting on some occasions in a lower clinical starting dose and/or increased awareness for potential effects on the cardiovascular system in the Phase I study. Overall, this investigation provides information supporting an overhaul of the current "box ticking" core battery approach used for safety pharmacology testing. However, in order to achieve a more focused examination to investigate potential undesirable pharmacodynamic effects of a new candidate drug and also support 3Rs (Replacement, Reduction and Refinement) thinking in performing unnecessary studies, there will not only need to be a sea change by drug developers but also a change in current regulatory guidance.
Collapse
Affiliation(s)
- Paul Baldrick
- Strategic Product Development Consulting, Covance Clinical & Commercialisation Services, Covance, Harrogate, North Yorkshire HG3 1PY, United Kingdom.
| |
Collapse
|
5
|
Guns PJD, Guth BD, Braam S, Kosmidis G, Matsa E, Delaunois A, Gryshkova V, Bernasconi S, Knot HJ, Shemesh Y, Chen A, Markert M, Fernández MA, Lombardi D, Grandmont C, Cillero-Pastor B, Heeren RMA, Martinet W, Woolard J, Skinner M, Segers VFM, Franssen C, Van Craenenbroeck EM, Volders PGA, Pauwelyn T, Braeken D, Yanez P, Correll K, Yang X, Prior H, Kismihók G, De Meyer GRY, Valentin JP. INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. J Pharmacol Toxicol Methods 2020; 105:106889. [PMID: 32565326 DOI: 10.1016/j.vascn.2020.106889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.
Collapse
Affiliation(s)
- Pieter-Jan D Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Brian D Guth
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Annie Delaunois
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | - Vitalina Gryshkova
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | | | | | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Markert
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, United Kingdom
| | - Matt Skinner
- Vivonics Preclinical Ltd, BioCity, Nottingham, United Kingdom
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Constantijn Franssen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Paul G A Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | | | - Paz Yanez
- Department of Research Affairs & Innovation, University of Antwerp, Antwerp, Belgium
| | - Krystle Correll
- Safety Pharmacology Society, Reston, Virginia, United States
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Helen Prior
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Gábor Kismihók
- Leibniz Information Centre for Science and Technology, Hannover, Germany; Marie Curie Alumni Association, Brussels, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| |
Collapse
|