1
|
Wu Z, Cardona EA, Cohn JA, Pierce JT. Nonapoptotic role of EGL-1 in exopher production and neuronal health in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2407909122. [PMID: 39786930 PMCID: PMC11745333 DOI: 10.1073/pnas.2407909122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025] Open
Abstract
While traditionally studied for their proapoptotic functions in activating the caspase, research suggests BH3-only proteins also have other roles such as mitochondrial dynamics regulation. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the role of neuronal BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Eric A. Cardona
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Jesse A. Cohn
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Jonathan T. Pierce
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Ladagu A, Olopade F, Chazot P, Elufioye T, Luong T, Fuller M, Halprin E, Mckay J, Ates-Alagoz Z, Gilbert T, Adejare A, Olopade J. ZA-II-05, a novel NMDA-receptor antagonist reverses vanadium-induced neurotoxicity in Caenorhabditis elegans (C. elegans). BMC Neurosci 2024; 25:56. [PMID: 39468459 PMCID: PMC11520585 DOI: 10.1186/s12868-024-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION Vanadium is a widely used transition metal in industrial applications, but it also poses significant neurotoxic and environmental risks. Previous studies have shown that exposure to vanadium may lead to neurodegenerative diseases and neuropathic pain, raising concerns about its impact on human health and the ecosystem. To address vanadium neurotoxicity, through targeting NMDA glutamate and dopamine signaling, both involved in neurodegenerative disorders, shows promise. Using Caenorhabditis elegans as a model, we evaluated a novel compound with a mixed NMDA glutamate receptor-dopamine transporter pharmacology, ZA-II-05 and found it effectively ameliorated vanadium-induced neurotoxicity, suggesting a potential neuroprotective role. METHODS Synchronized young adult worms were assigned to four different experimental groups; Controls; 100 mM of Vanadium; Vanadium and 1 mg/ml ZA-II-05; and ZA-II-05 alone. These were examined with different markers, including DAPI, MitoTracker Green and MitoSox stains for assessment of nuclei and mitochondrial density and oxidative stress, respectively. RESULTS Exposure to vanadium in C. elegans resulted in decreased nuclear presence and reduction in mitochondrial content were also analyzed based on fluorescence in the pharyngeal region, signifying an increase in the production of reactive oxygen species, while vanadium co-treatment with ZA-II-05 caused a significant increase in nuclear presence and mitochondrial content. DISCUSSION Treatment with ZA-II-05 significantly preserved cellular integrity, exhibiting a reversal of the detrimental effects induced by vanadium by modulating and preserving the normal function of chemosensory neurons and downstream signaling pathways. This study provides valuable insights into the mechanisms of vanadium-induced neurotoxicity and offers perspectives for developing therapeutic interventions for neurodegenerative diseases related to environmental toxins.
Collapse
Affiliation(s)
- Amany Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Paul Chazot
- Department of Biosciences, Durham University, County Durham, DH1 3LE, UK
| | - Taiwo Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA, USA
| | - Ethan Halprin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jessica Mckay
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Taidinda Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA.
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Su Q, Wu L, Zheng C, Ji X, Lin X, Zhang Y, Zheng F, Guo Z, Shao W, Hu H, Zhou J, Jiang Y, Tang Y, Wu S, Aschner M, Li H, Yu G. ALKBH5-mediated N6-methyladenosine modification of HO-1 mRNA regulates ferroptosis in cobalt-induced neurodegenerative damage. ENVIRONMENT INTERNATIONAL 2024; 190:108897. [PMID: 39047545 DOI: 10.1016/j.envint.2024.108897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The utilization of Cobalt (Co) has surged due to it is critical role in renewable energy technologies and other high-tech applications. Concurrently, the potential health risks associated with Co exposure have raised concerns. Previous studies, including our own, have shown that Co can impair learn and memory functions as an epigenetic hazard, even at low concentrations. In this study, we explore the mechanisms of Co-induced ferroptosis in neurodegenerative damage both in vivo and in vitro, focusing on the epigenetic regulation by N6-methyladenosine (m6A) demethylase alkB homolog 5 (ALKBH5). We identify heme oxygenase-1 (HO-1) as a direct target gene of ALKBH5, playing a crucial role in mitigating Co-induced ferroptosis. ALKBH5 deficiency affects the post-transcriptional regulation of HO-1 through m6A modification, which in turn influences mRNA's stability, intracellular distribution, and alternative splicing, thereby enhancing susceptibility to Co-induced ferroptosis. Additionally, we discuss the potential involvement of heterogeneous nuclear ribonucleoprotein M (hnRNPM) in regulating alternative splicing of HO-1 mRNA, potentially mediated by m6A modifications. This study provides new epigenetic insights into the post-transcriptional regulatory mechanisms involved in Co-induced ferroptosis and highlights the broader implications of environmental hazards in neurodegenerative damage.
Collapse
Affiliation(s)
- Qianqian Su
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Xianqi Ji
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yu Jiang
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- The Key Laboratory of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
4
|
Bejaoui S, Chetoui I, Ghribi F, Belhassen D, Abdallah BB, Fayala CB, Boubaker S, Mili S, Soudani N. Exposure to different cobalt chloride levels produces oxidative stress and lipidomic changes and affects the liver structure of Cyprinus carpio juveniles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51658-51672. [PMID: 39117974 DOI: 10.1007/s11356-024-34578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The present investigation was undertaken to evaluate the toxic effects of CoCl2-induced hepatotoxicity and fatty acid changes in juvenile Cyprinus carpio. Fish were divided into six experimental groups in duplicate. The first group served as controls. The second group received the lowest exposure dose at 2.5 µg/L. In the third group, fish were exposed to 25 µg/L of CoCl2. The fourth group was exposed to 50 µg/L of CoCl2. The last two groups were exposed to the highest doses, 100 and 500 µg/L of CoCl2. Total antioxidant activities were estimated using a colorimetric method. Liver fatty acid compositions were analyzed by high-performance gas chromatography (GC). Hepatopathy was identified through microscopic analysis. Exposure of C. carpio to CoCl2 resulted in hepatotoxicity, indicated by increased levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), protein carbonyls (PCO), and alterations in the ferric reducing antioxidant power system (FRAP). Superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), metallothioneins (MTs), and low thiol levels (L-SH) significantly increased, particularly under exposure to the highest CoCl2 doses (100 and 500 µg/L). Acetylcholinesterase activity decreased significantly in C. carpio exposed to graded CoCl2 doses. Additionally, there was a decrease in polyunsaturated fatty acids (PUFA), primarily n-3 PUFA, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), while an increase in monounsaturated (MUFA) and saturated fatty acids (SFA), including palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), and oleic (C18:1) acids, was observed. Histopathological examination of the liver confirmed hepatopathy revealing characteristic tissue changes such as leucocyte infiltration, hepatic cell membrane degradation, vacuolization, and lipid inclusions. The study provided ethnophysiology insights into the responses of C. carpio to CoCl2-induced oxidative stress and lipidomic alteration, underscoring its potential as a bioindicator for assessing environmental impacts and metal contamination.
Collapse
Affiliation(s)
- Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Imene Chetoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- High Institute of Aquaculture and Fishing of Bizerte, BP15, 7080, Menzel Jemil, Tunisia
| | - Dalya Belhassen
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Boutheina Ben Abdallah
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Chaima Ben Fayala
- Unit of Pathological and Experimental Human Anatomy, Institute of Pasteur of Tunis, 1002, Tunis-Belvedere, Tunisia
| | - Samir Boubaker
- Unit of Pathological and Experimental Human Anatomy, Institute of Pasteur of Tunis, 1002, Tunis-Belvedere, Tunisia
| | - Sami Mili
- High Institute of Aquaculture and Fishing of Bizerte, BP15, 7080, Menzel Jemil, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
5
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
6
|
Chen C, Chen J, Lin X, Yang J, Qu H, Li L, Zhang D, Wang W, Chang X, Guo Z, Cai P, Yu G, Shao W, Hu H, Wu S, Li H, Bornhorst J, Aschner M, Zheng F. Evaluation of neurotoxicity and the role of oxidative stress of cobalt nanoparticles, titanium dioxide nanoparticles, and multiwall carbon nanotubes in Caenorhabditis elegans. Toxicol Sci 2023; 196:85-98. [PMID: 37584706 PMCID: PMC10614054 DOI: 10.1093/toxsci/kfad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The widespread use of nanomaterials in daily life has led to increased concern about their potential neurotoxicity. Therefore, it is particularly important to establish a simple and reproducible assessment system. Representative nanomaterials, including cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2-NPs), and multiwall carbon nanotubes (MWCNTs), were compared in terms of their neurotoxicity and underlying mechanisms. In 0, 25, 50, and 75 μg/ml of these nanomaterials, the survival, locomotion behaviors, acetylcholinesterase (AchE) activity, reactive oxygen species production, and glutathione-S transferase 4 (Gst-4) activation in wildtype and transgenic Caenorhabditis elegans (C. elegans) were evaluated. All nanomaterials induced an imbalance in oxidative stress, decreased the ratio of survival, impaired locomotion behaviors, as well as reduced the activity of AchE in C. elegans. Interestingly, CoNPs and MWCNTs activated Gst-4, but not TiO2-NPs. The reactive oxygen species scavenger, N-acetyl-l-cysteine, alleviated oxidative stress and Gst-4 upregulation upon exposure to CoNPs and MWCNTs, and rescued the locomotion behaviors. MWCNTs caused the most severe damage, followed by CoNPs and TiO2-NPs. Furthermore, oxidative stress and subsequent activation of Gst-4 were involved in nanomaterials-induced neurotoxicity. Our study provides a comprehensive comparison of the neurotoxicity and mechanisms of typical nanomaterials, which could serve as a model for hazard assessment of environmental pollutants using C. elegans as an experimental model system.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiafu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huimin Qu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Lisong Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Duanyan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wei Wang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge—DFG Research Unit FOR 2558, Berlin-Potsdam, Jena, 42119 Wuppertal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
7
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
8
|
Zheng C, Yu G, Su Q, Wu L, Tang J, Lin X, Chen Y, Guo Z, Zheng F, Zheng H, Lin L, Tang Y, Wu S, Li H. The deficiency of N6-methyladenosine demethylase ALKBH5 enhances the neurodegenerative damage induced by cobalt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163429. [PMID: 37072102 DOI: 10.1016/j.scitotenv.2023.163429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Cobalt exposure, even at low concentrations, induces neurodegenerative damage, such as Alzheimer's disease (AD). The specific underlying mechanisms remain unclear. Our previous study demonstrated that m6A methylation alteration is involved in cobalt-induced neurodegenerative damage, such as in AD. However, the role of m6A RNA methylation and its underlying mechanisms are poorly understood. In this study, both epidemiological and laboratory studies showed that cobalt exposure could downregulate the expression of the m6A demethylase ALKBH5, suggesting a key role for ALKBH5. Moreover, Methylated RNA immunoprecipitation and sequencing (MeRIP-seq) analysis revealed that ALKBH5 deficiency is associated with neurodegenerative diseases. KEGG pathway and Gene ontology analyses further revealed that the differentially m6A-modified genes resulting from ALKBH5 downregulation and cobalt exposure were aggregated in the pathways of proliferation, apoptosis, and autophagy. Subsequently, ALKBH5 deficiency was shown to exacerbate cell viability decline, motivate cell apoptosis and attenuate cell autophagy induced by cobalt with experimental techniques of gene overexpression/inhibition. In addition, morphological changes in neurons and the expression of AD-related proteins, such as APP, P-Tau, and Tau, in the cerebral hippocampus of wild-type and ALKBH5 knockout mice after chronic cobalt exposure were also investigated. Both in vitro and in vivo results showed that lower expression of ALKBH5 aggravated cobalt-induced neurodegenerative damage. These results suggest that ALKBH5, as an epigenetic regulator, could be a potential target for alleviating cobalt-induced neurodegenerative damage. In addition, we propose a novel strategy for the prevention and treatment of environmental toxicant-related neurodegeneration from an epigenetic perspective.
Collapse
Affiliation(s)
- Chunyan Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jianping Tang
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Zheng
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Liqiong Lin
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
9
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADARs employ a neural-specific mechanism to regulate PQM-1 expression and survival from hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539519. [PMID: 37205482 PMCID: PMC10187282 DOI: 10.1101/2023.05.05.539519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, 47405 USA
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington IN 47405 USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | | |
Collapse
|
10
|
Agarrayua DA, Silva AC, Saraiva NR, Soares AT, Aschner M, Avila DS. Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans. ADVANCES IN NEUROTOXICOLOGY 2023; 9:107-148. [PMID: 37384197 PMCID: PMC10306323 DOI: 10.1016/bs.ant.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Danielle Araujo Agarrayua
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Silva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Nariani Rocha Saraiva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daiana Silva Avila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduate Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
11
|
Chen J, Chen C, Wang N, Wang C, Gong Z, Du J, Lai H, Lin X, Wang W, Chang X, Aschner M, Guo Z, Wu S, Li H, Zheng F. Cobalt nanoparticles induce mitochondrial damage and β-amyloid toxicity via the generation of reactive oxygen species. Neurotoxicology 2023; 95:155-163. [PMID: 36716931 DOI: 10.1016/j.neuro.2023.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Exposure to cobalt nanoparticles (CoNPs) has been associated with neurodegenerative disorders, while the mitochondrial-associated mechanisms that mediate their neurotoxicity have yet to be fully characterized. In this study, we reported that CoNPs exposure reduced the survival and lifespan in the nematodes, Caenorhabditis elegans (C. elegans). Moreover, exposure to CoNPs aggravated the induction of paralysis and the aggregation of β-amyloid (Aβ). These effects were accompanied by reactive oxygen species (ROS) overproduction, ATP reduction as well as mitochondrial fragmentation. Dynamin-related protein 1 (drp-1) activation and ensuing mitochondrial fragmentation have been shown to be associated with CoNPs-reduced survival. In order to address the role of mitochondrial damage and ROS production in CoNPs-induced Aβ toxicity, the mitochondrial reactive oxygen species scavenger mitoquinone (Mito Q) was used. Our results showed that Mito Q pretreatment alleviated CoNPs-induced ROS generation, rescuing mitochondrial dysfunction, thereby lessening the CoNPs-induced Aβ toxicity. Taken together, we show for the first time, that increasing of ROS and the upregulation of drp-1 lead to CoNPs-induced Aβ toxicity. Our novel findings provide in vivo evidence for the mechanisms of environmental toxicant-induced Aβ toxicity, and can afford new modalities for the prevention and treatment of CoNPs-induced neurodegeneration.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Na Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chunyu Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Zhaohui Gong
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingxian Du
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Honglin Lai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Wei Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhenkun Guo
- The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
12
|
Zheng F, Chen C, Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr Protoc 2022; 2:e496. [PMID: 35849041 PMCID: PMC9299521 DOI: 10.1002/cpz1.496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials are broadly used in a variety of industries and consumer products. However, studies have demonstrated that many nanomaterials, including metal-containing nanoparticles and nanoplastics, have neurotoxic effects. Caenorhabditis elegans (C. elegans) is a widely used model organism with numerous advantages for research, including transparency, short life span, well-characterized nervous system, complete connectome, available genome, and numerous genetic tools. C. elegans has been extensively used to assess the neurotoxicity of multiple chemicals via survival assays, behavioral tests, neuronal morphology studies, and various molecular and mechanistic analyses. However, detailed protocols describing general assays in C. elegans to examine the neurotoxic effects of nanomaterials are limited. Here, we describe protocols for assessing nanomaterial neurotoxicity in C. elegans. We describe the steps for exposure and subsequent evaluation of survival, locomotion behavior, and oxidative stress. Survival and locomotion behavior are measured in wild-type N2 strains to assess acute neurotoxicity. Oxidative stress is used as an endpoint here since it is one of the most predominant and common changes induced by nanomaterials. VP596 nematodes, which express GFP upon activation of skn-1 (the worm homolog of Nrf2), are evaluated for assays of oxidative stress in response to test nanomaterials. These assays can be readily used to quickly examine the neurotoxicity of nanomaterials in vivo, laying the foundation for mechanistic studies of nanomaterials and their impacts on health and physiology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Exposure of C. elegans to nanomaterials Basic Protocol 2: Survival assessment Basic Protocol 3: Assessment of locomotion behavior Basic Protocol 4: Analysis of oxidative stress.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou, Fujian, P. R. China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461 Bronx, NY, USA
| |
Collapse
|
13
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Tang J, Su Q, Guo Z, Zhou J, Zheng F, Yu G, Shao W, Hu H, Wu S, Li H. N6-methyladenosine(m 6A) demethylase FTO regulates cellular apoptosis following cobalt-induced oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118749. [PMID: 34968619 DOI: 10.1016/j.envpol.2021.118749] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Cobalt is an environmental toxicant that is known to damage human health. However, the molecular mechanisms underlying cobalt-induced neurotoxicity have not been elucidated in detail. In the present research, we used human neuroglioma H4 cells as an in vitro model. Cells were exposed to CoCl2 (0, 100, 200, 400 μM) for 24 h. We performed m6A sequencing techniques and constructed FTO-knockdown/FTO-overexpressing cells to investigate the role of FTO-mediated m6A modification in regulating apoptosis following CoCl2 induced oxidative stress. Our study has shown CoCl2 exposure led to the decrease of demethylase FTO as well as elevated oxidative stress. However, NAC treatment could partly reverse the reduction of FTO expression as well as the degree of ROS via eliminating oxidative stress. Meanwhile, MeRIP-seq and RNA-seq further revealed the potential function m6A modification in regulating apoptosis. More importantly, KEGG pathway and Gene ontology (GO) analyses further elucidated that the differentially m6A-modified genes were aggregated in apoptosis-related pathways. Mechanistic analysis indicated that knockdown of FTO facilitated CoCl2-induced apoptosis via caspase activation and G1/S cell cycle arrest. Nevertheless, overexpression of FTO partly attenuated the increased apoptosis following CoCl2 exposure. More notably, we observed that FTO regulated apoptosis in an m6A-dependent manner. Therefore, our findings reveal that CoCl2 induced ROS affected the m6A modification of apoptosis-related genes by decreasing the expression of FTO, thereby resulting in the activation of apoptosis. These findings provide important insights into CoCl2-induced apoptosis and m6A modification and propose a novel strategy for studying environmental toxicant-related neurodegeneration.
Collapse
Affiliation(s)
- Jianping Tang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Qianqian Su
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jinfu Zhou
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wenya Shao
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Hu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Zheng F, Luo Z, Lin X, Wang W, Aschner M, Cai P, Wang YL, Shao W, Yu G, Guo Z, Wu S, Li H. Intercellular transfer of mitochondria via tunneling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Nanotoxicology 2021; 15:1358-1379. [PMID: 35077651 PMCID: PMC9490506 DOI: 10.1080/17435390.2022.2026515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Broad applications of cobalt nanoparticles (CoNPs) have raised increased concerns regarding their potential toxicity. However, the underlining mechanisms of their toxicity have yet to be characterized. Here, we demonstrated that CoNPs reduced cell viability and induced membrane leakage. CoNPs induced oxidative stress, as indicated by the generation of reactive oxygen species (ROS) secondary to the increased expression of hypoxia-induced factor 1 alpha. Moreover, CoNPs led to mitochondrial damage, including generation of mitochondrial ROS, reduction in ATP content, morphological damage and autophagy. Interestingly, exogenous mitochondria were observed between neurons and astrocytes upon CoNPs exposure. Concomitantly, tunneling nanotubes (TNTs)-like structures were observed between neurons and astrocytes upon CoNPs exposure. These structures were further verified to be TNTs as they were found to be F-actin rich and lacking tubulin. We then demonstrated that TNTs were utilized for mitochondrial transfer between neurons and astrocytes, suggesting a novel crosstalk phenomenon between these cells. Moreover, we found that the inhibition of TNTs (using actin-depolymerizing drug latrunculin B) intensified apoptosis triggered by CoNPs. Therefore, we demonstrate, for the first time, that the inhibition of intercellular mitochondrial transfer via TNTs aggravates CoNPs-induced cellular and mitochondrial toxicity in neuronal cells, implying a novel intercellular protection mechanism in response to nanoparticle exposure.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhousong Luo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xinpei Lin
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wei Wang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Corresponding authors: H. Li: ; S. Wu: . Tel: +086-591-22862527; Fax: +086-591-22862510
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Corresponding authors: H. Li: ; S. Wu: . Tel: +086-591-22862527; Fax: +086-591-22862510
| |
Collapse
|
16
|
Zheng F, Li Y, Zhang F, Sun Y, Zheng C, Luo Z, Wang YL, Aschner M, Zheng H, Lin L, Cai P, Shao W, Guo Z, Zheng M, Zhou XZ, Lu KP, Wu S, Li H. Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126378. [PMID: 34175703 DOI: 10.1016/j.jhazmat.2021.126378] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Cobalt is a hazardous material that has harmful effects on neurotoxicity. Excessive exposure to cobalt or inactivation of the unique proline isomerase Pin1 contributes to age-dependent neurodegeneration. However, nothing is known about the role of Pin1 in cobalt-induced neurodegeneration. Here we find that out of several hazardous materials, only cobalt dose-dependently decreased Pin1 expression and alterations in its substrates, including cis and trans phosphorylated Tau in human neuronal cells, concomitant with neurotoxicity. Cobalt-induced neurotoxicity was aggravated by Pin1 genetic or chemical inhibition, but rescued by Pin1 upregulation. Furthermore, less than 4 μg/l of blood cobalt induced dose- and age-dependent Pin1 downregulation in murine brains, ensuing neurodegenerative changes. These defects were corroborated by changes in Pin1 substrates, including cis and trans phosphorylated Tau, amyloid precursor protein, β amyloid and GSK3β. Moreover, blood Pin1 was downregulated in human hip replacement patients with median blood cobalt level of 2.514 μg/l, which is significantly less than the safety threshold of 10 μg/l, suggesting an early role Pin1 played in neurodegenerative damages. Thus, Pin1 inactivation by cobalt contributes to age-dependent neurodegeneration, revealing that cobalt is a hazardous material triggering AD-like neurodegenerative damages.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuqing Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fengshun Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yi Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hong Zheng
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Liqiong Lin
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Ping Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Min Zheng
- Institute for Translational Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
17
|
Zheng F, Aschner M, Li H. Evaluations of Environmental Pollutant-Induced Mitochondrial Toxicity Using Caenorhabditis elegans as a Model System. Methods Mol Biol 2021; 2326:33-46. [PMID: 34097259 DOI: 10.1007/978-1-0716-1514-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Environmental pollutants inevitably exert adverse effects on humans and other species. Quick identification and in-depth characterization of the pollutants are requisite objectives for clinicians and environmental health scientists. The nematode Caenorhabditis elegans has been utilized as a model organism for toxicity evaluation of environmental pollutants, due to its transparency, short lifespan, entire genome sequencing, and economical characteristics. However, few researchers have systematically addressed mitochondrial toxicity in response to toxicants, despite the critical role mitochondria play in energy production and respiration, as well as the generation of reactive oxygen species. Mitochondria are vulnerable to environmental pollutants, and their dysfunction contributes to cellular damage and toxicity in plethora of diseases. Here, we describe methods in step-by-step for mitochondrial toxicity evaluation in response to pollutants, including exposure of C. elegans to toxicants, mitochondrial ROS detection, mitochondrial morphology analysis, mitochondrial function analysis, such as ATP production and oxygen consumption, and gene expression studies, with the application of corresponding genetically modified strains.
Collapse
Affiliation(s)
- Fuli Zheng
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|