1
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
2
|
Nielsen GH, Heiger-Bernays WJ, Levy JI, White RF, Axelrad DA, Lam J, Chartres N, Abrahamsson DP, Rayasam SDG, Shaffer RM, Zeise L, Woodruff TJ, Ginsberg GL. Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects. Environ Health 2023; 21:129. [PMID: 36635712 PMCID: PMC9835218 DOI: 10.1186/s12940-022-00918-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this "bright line" approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks.
Collapse
Affiliation(s)
- Greylin H Nielsen
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | - Wendy J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA.
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | | | - Juleen Lam
- Department of Public Health, California State University, East Bay, Hayward, CA, USA
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitri Panagopoulos Abrahamsson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Swati D G Rayasam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gary L Ginsberg
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Boysen G, Rusyn I, Chiu WA, Wright FA. Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice. Regul Toxicol Pharmacol 2022; 132:105171. [DOI: 10.1016/j.yrtph.2022.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|