1
|
Camilleri F, Wenda JM, Pecoraro-Mercier C, Comet JP, Rouquié D. Cell Painting and Chemical Structure Read-Across Can Complement Each Other for Rat Acute Oral Toxicity Prediction in Chemical Early Derisking. Chem Res Toxicol 2024; 37:1851-1866. [PMID: 39513413 DOI: 10.1021/acs.chemrestox.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Early derisking decisions in the development of new chemical compounds enable the identification of novel chemical candidates with improved safety profiles. In vivo studies are traditionally conducted in the early assessment of acute oral toxicity of crop protection products to avoid compounds, which are considered "very acutely toxic", with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight. Those studies are lengthy and costly and raise ethical concerns, catalyzing the use of nonanimal alternatives. The objective of our analysis was to assess the predictive efficacy of read-across approaches for acute oral toxicity in rats, comparing the use of chemical structure information, in vitro biological data derived from the Cell Painting profiling assay on U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of 0.85).
Collapse
Affiliation(s)
- Fabrice Camilleri
- Toxicology Data Science, Bayer SAS Crop Science Division, 355 rue Dostoïevski, CS 90153 Valbonne, Cedex, Sophia Antipolis 06906, France
- I3S UMR 7271 du CNRS, Université Côte d'Azur, Bâtiment Algorithme-Euclide-B, 2000 Route des Lucioles, B.P. 121, Sophia Antipolis 06903, France
| | - Joanna M Wenda
- Early Toxicology, Bayer SAS Crop Science Division, 355 rue Dostoïevski, CS 90153 Valbonne, Cedex, Sophia Antipolis 06906, France
| | - Claire Pecoraro-Mercier
- Early Toxicology, Bayer SAS Crop Science Division, 355 rue Dostoïevski, CS 90153 Valbonne, Cedex, Sophia Antipolis 06906, France
| | - Jean-Paul Comet
- I3S UMR 7271 du CNRS, Université Côte d'Azur, Bâtiment Algorithme-Euclide-B, 2000 Route des Lucioles, B.P. 121, Sophia Antipolis 06903, France
| | - David Rouquié
- Toxicology Data Science, Bayer SAS Crop Science Division, 355 rue Dostoïevski, CS 90153 Valbonne, Cedex, Sophia Antipolis 06906, France
| |
Collapse
|
2
|
Isaacs KK, Wall JT, Paul Friedman K, Franzosa JA, Goeden H, Williams AJ, Dionisio KL, Lambert JC, Linnenbrink M, Singh A, Wambaugh JF, Bogdan AR, Greene C. Screening for drinking water contaminants of concern using an automated exposure-focused workflow. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:136-147. [PMID: 37193773 PMCID: PMC11131037 DOI: 10.1038/s41370-023-00552-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The number of chemicals present in the environment exceeds the capacity of government bodies to characterize risk. Therefore, data-informed and reproducible processes are needed for identifying chemicals for further assessment. The Minnesota Department of Health (MDH), under its Contaminants of Emerging Concern (CEC) initiative, uses a standardized process to screen potential drinking water contaminants based on toxicity and exposure potential. OBJECTIVE Recently, MDH partnered with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) to accelerate the screening process via development of an automated workflow accessing relevant exposure data, including exposure new approach methodologies (NAMs) from ORD's ExpoCast project. METHODS The workflow incorporated information from 27 data sources related to persistence and fate, release potential, water occurrence, and exposure potential, making use of ORD tools for harmonization of chemical names and identifiers. The workflow also incorporated data and criteria specific to Minnesota and MDH's regulatory authority. The collected data were used to score chemicals using quantitative algorithms developed by MDH. The workflow was applied to 1867 case study chemicals, including 82 chemicals that were previously manually evaluated by MDH. RESULTS Evaluation of the automated and manual results for these 82 chemicals indicated reasonable agreement between the scores although agreement depended on data availability; automated scores were lower than manual scores for chemicals with fewer available data. Case study chemicals with high exposure scores included disinfection by-products, pharmaceuticals, consumer product chemicals, per- and polyfluoroalkyl substances, pesticides, and metals. Scores were integrated with in vitro bioactivity data to assess the feasibility of using NAMs for further risk prioritization. SIGNIFICANCE This workflow will allow MDH to accelerate exposure screening and expand the number of chemicals examined, freeing resources for in-depth assessments. The workflow will be useful in screening large libraries of chemicals for candidates for the CEC program.
Collapse
Affiliation(s)
- Kristin K Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA.
| | - Jonathan T Wall
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Jill A Franzosa
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Helen Goeden
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55155, USA
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Kathie L Dionisio
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Jason C Lambert
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Monica Linnenbrink
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Amar Singh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Alexander R Bogdan
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55155, USA
| | - Christopher Greene
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55155, USA
| |
Collapse
|
3
|
Kolanczyk RC, Denny JS, Sheedy BR, Olson VV, Serrano JA, Tapper MA. Increased Endocrine Activity of Xenobiotic Chemicals as Mediated by Metabolic Activation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2747-2757. [PMID: 37712519 PMCID: PMC12068233 DOI: 10.1002/etc.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The US Environmental Protection Agency (USEPA) is faced with long lists of chemicals that require hazard assessment. The present study is part of a larger effort to develop in vitro assays and quantitative structure-activity relationships applicable to untested chemicals on USEPA inventories through study of estrogen receptor (ER) binding and estrogen-mediated gene expression in fish. The present effort investigates metabolic activation of chemicals resulting in increased estrogenicity. Phenolphthalin (PLIN) was shown not to bind rainbow trout (Oncorhynchus mykiss) ER (rtER) in a competitive binding assay, but vitellogenin (Vtg) expression was induced in trout liver slices exposed to 10-4 and 10-3.7 M PLIN. Phenolphthalein (PLEIN), a metabolite of PLIN, was subsequently determined to be formed when slices were exposed to PLIN. It binds rtER with a relative binding affinity to 17β-estradiol of 0.020%. Slices exposed to PLEIN expressed Vtg messenger RNA (mRNA) at 10-4.3 , 10-4 , and 10-3.7 M, with no detectable PLIN present. Thus, Vtg expression noted in PLIN slice exposures was explained by metabolism to PLEIN in trout liver slices. A second model chemical, 4,4'-methylenedianiline (MDA), was not shown to bind rtER but did induce Vtg mRNA production in tissue slices at 10-4.3 , 10-4 , and 10-3.7 M in amounts nearly equal to reference estradiol induction, thus indicating metabolic activation of MDA. A series of experiments were performed to identify a potential metabolite responsible for the observed increase in activity. Potential metabolites hydroxylamine-MDA, nitroso-MDA, azo-MDA, and azoxy-MDA were not observed. However, acetylated MDA was observed and tested in both ER-binding and tissue slice Vtg induction assays. Environ Toxicol Chem 2023;42:2747-2757. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Richard C. Kolanczyk
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| | - Jeffery S. Denny
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804 [RETIRED]
| | - Barbara R. Sheedy
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804 [RETIRED]
| | - Victoria V. Olson
- The College of Saint Scholastica, Department of Biology, 1200 Kenwood Avenue, Duluth, MN 55811
| | - Jose A. Serrano
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| | - Mark A. Tapper
- United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804
| |
Collapse
|
4
|
Hopperstad K, Deisenroth C. Development of a bioprinter-based method for incorporating metabolic competence into high-throughput in vitro assays. FRONTIERS IN TOXICOLOGY 2023; 5:1196245. [PMID: 37215384 PMCID: PMC10192685 DOI: 10.3389/ftox.2023.1196245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The acceptance and use of in vitro data for hazard identification, prioritization, and risk evaluation is partly limited by uncertainties associated with xenobiotic metabolism. The lack of biotransformation capabilities of many in vitro systems may under- or overestimate the hazard of compounds that are metabolized to more or less active metabolites in vivo. One approach to retrofitting existing bioassays with metabolic competence is the lid-based Alginate Immobilization of Metabolic Enzymes (AIME) method, which adds hepatic metabolism to conventional high-throughput screening platforms. Here, limitations of the lid-based AIME method were addressed by incorporating bioprinting, which involved depositing S9-encapsulated microspheres into standard 384-well plates with requisite cofactors for phase I and II hepatic metabolism. Objectives of this study included: 1) compare the lid-based and AIME bioprinting methods by assessing the enzymatic activity of a common cytochrome P450 (CYP) enzyme, 2) use biochemical assays with the bioprinting method to characterize additional measures of phase I and II metabolic activity, and 3) evaluate the bioprinting method by screening 25 chemicals of known metabolism-dependent bioactivity in the VM7Luc estrogen receptor transactivation (ERTA) assay. A comparison of the two methods revealed comparable precision and dynamic range. Activity of additional CYP enzymes and glucuronidation was observed using the AIME bioprinting method. The ERTA experiment identified 19/21 ER-active test chemicals, 14 of which were concordant with expected biotransformation effects (73.7%). Additional refinement of the AIME bioprinting method has the potential to expand high-throughput screening capabilities in a robust, accessible manner to incorporate in vitro metabolic competence.
Collapse
|
5
|
Ooka M, Zhao J, Shah P, Travers J, Klumpp-Thomas C, Xu X, Huang R, Ferguson S, Witt KL, Smith-Roe SL, Simeonov A, Xia M. Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Arch Toxicol 2022; 96:1975-1987. [PMID: 35435491 PMCID: PMC9151520 DOI: 10.1007/s00204-022-03291-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Currently, approximately 80,000 chemicals are used in commerce. Most have little-to-no toxicity information. The U.S. Toxicology in the 21st Century (Tox21) program has conducted a battery of in vitro assays using a quantitative high-throughput screening (qHTS) platform to gain toxicity information on environmental chemicals. Due to technical challenges, standard methods for providing xenobiotic metabolism could not be applied to qHTS assays. To address this limitation, we screened the Tox21 10,000-compound (10K) library, with concentrations ranging from 2.8 nM to 92 µM, using a p53 beta-lactamase reporter gene assay (p53-bla) alone or with rat liver microsomes (RLM) or human liver microsomes (HLM) supplemented with NADPH, to identify compounds that induce p53 signaling after biotransformation. Two hundred and seventy-eight compounds were identified as active under any of these three conditions. Of these 278 compounds, 73 gave more potent responses in the p53-bla assay with RLM, and 2 were more potent in the p53-bla assay with HLM compared with the responses they generated in the p53-bla assay without microsomes. To confirm the role of metabolism in the differential responses, we re-tested these 75 compounds in the absence of NADPH or with heat-attenuated microsomes. Forty-four compounds treated with RLM, but none with HLM, became less potent under these conditions, confirming the role of RLM in metabolic activation. Further evidence of biotransformation was obtained by measuring the half-life of the parent compounds in the presence of microsomes. Together, the data support the use of RLM in qHTS for identifying chemicals requiring biotransformation to induce biological responses.
Collapse
Affiliation(s)
- Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|