1
|
Rice L, Sara R. Updating the determinants of health model in the Information Age. Health Promot Int 2018; 34:1241-1249. [PMID: 30212852 DOI: 10.1093/heapro/day064] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In 1991, Dahlgren and Whitehead produced a highly influential model of the determinants of health that has since been used by numerous national and international public health organizations globally. The purpose of the model is to enable interventions that improve health to be addressed at four key policy levels. It is not a model of health or disease; instead the model is structured around health policy decision-making. However the model needs an update, since it was devised there has been a digital revolution that has transformed every aspect of: human life, our cities, society and the fundamental principles upon which the global economy operates. The article examines the impact of Information and Communication Technologies (ICT) on the determinants of health. ICT has given rise to a new Information Age that is implicated in many of the major global health issues today. Addressing contemporary health issues requires intervention at the level of ICT, particularly as health communication online is central to the delivery and dissemination of public health policies.
Collapse
Affiliation(s)
- Louis Rice
- Department of Architecture, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Rachel Sara
- Department of Architecture, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
2
|
Poursadeghian S, Rabiee M, Moshayedi HR, Karimi M, Tahriri M, Tayebi L. Development of electrochemical noninvasive glucose nanobiosensor using antioxidants as a novel mediator. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sepideh Poursadeghian
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Hamid Reza Moshayedi
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Meysam Karimi
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences; Marquette University; Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences; Marquette University; Milwaukee WI 53233 USA
- Department of Engineering Science; University of Oxford; Oxford OX1 3PJ UK
| |
Collapse
|
3
|
Azhdarzadeh M, Saei AA, Sharifi S, Hajipour MJ, Alkilany AM, Sharifzadeh M, Ramazani F, Laurent S, Mashaghi A, Mahmoudi M. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine (Lond) 2015; 10:2931-52. [PMID: 26370561 DOI: 10.2217/nnm.15.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As research progresses, nanoparticles (NPs) are becoming increasingly promising tools for medical diagnostics and therapeutics. Despite this rise, their potential risks to human health, together with environmental issues, has led to increasing concerns regarding their use. As such, a comprehensive understanding of the interactions that occur at the nano-bio interface is required in order to design safe, reliable and efficient NPs for biomedical applications. To this end, extensive studies have been dedicated to probing the factors that define various properties of the nano-bio interface. However, the literature remains unclear and contains conflicting reports on cytotoxicity and biological fates, even for seemingly identical NPs. This uncertainty reveals that we frequently fail to identify and control relevant parameters that unambiguously and reproducibly determine the toxicity of nanoparticles, both in vitro and in vivo. An effective understanding of the toxicological impact of NPs requires the consideration of relevant factors, including the temperature of the target tissue, plasma gradient, cell shape, interfacial effects and personalized protein corona. In this review, we discuss the factors that play a critical role in nano-bio interface processes and nanotoxicity. A proper combinatorial assessment of these factors substantially changes our insight into the cytotoxicity, distribution and biological fate of NPs.
Collapse
Affiliation(s)
- Morteza Azhdarzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shahriar Sharifi
- Department of Biomaterials Science & Technology, University of Twente, The Netherlands
| | - Mohammad J Hajipour
- Department of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Sharifzadeh
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramazani
- Faculty of Medicine & Dentistry, University of Alberta, 116 St & 85 Ave, T6G 2R3, Edmonton, Canada
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
| | - Alireza Mashaghi
- Harvard Medical School, Harvard University, 25 Shattuck St, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Pharmacology & Toxicology Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:751-67. [PMID: 25645958 DOI: 10.1016/j.nano.2014.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/01/2022]
Abstract
Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. From the clinical editor: Many nervous system disorders remain unresolved clinical problems. In many cases, drug agents simply cannot cross the blood-brain barrier (BBB) into the nervous system. The advent of nanomedicines can enhance the delivery of biologically active molecules for targeted therapy and imaging. This review focused on the use of nanotechnology for degenerative, inflammatory, and infectious diseases in the nervous system.
Collapse
Affiliation(s)
- Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, IA USA
| | | | - Xinming Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA USA.
| |
Collapse
|
5
|
Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0071-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Frazzoli C, Bocca B, Mantovani A. The One Health Perspective in Trace Elements Biomonitoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:344-370. [PMID: 26691900 DOI: 10.1080/10937404.2015.1085473] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Health risks in both animals and humans are associated with chronic exposures to levels of trace elements (TE) eliciting toxic and/or antinutritional effects, including excess exposures to some essential elements. Interferences with essential TE may also lead to secondary nutritional deficiencies and/or imbalances. Although research is still required, biomarkers of exposure, including bioavailability, for TE are established tools for human biomonitoring that can also be applied to animal surveillance. Biomarkers of effect as well as, where available, of susceptibility and bioavailability are necessary to understand whether an ongoing exposure may pose a current or future health concern. In the field of animal health the use of biomarkers is less developed and less widespread than in human health; however, under a One Health perspective, animal biomonitoring can provide important information on the interfaces among humans, animals, and the environment, supporting the prevention and management of health risks. Therefore, a transfer of knowledge from human biomonitoring to farm or free-ranging animals is critical in a risk assessment framework from farm to humans. Advantages and critical aspects in designing and conducting integrative biomonitoring activities in humans and animals were critically reviewed focusing on biomarkers of exposure, effect, susceptibility, and bioavailability for toxic and essential TE. Highlighted aspects include TE metabolism, bioaccessibility, and interactions. Farm or free-ranging animals may provide noninvasive matrices suitable for evaluating animal welfare, environmental stressors, food safety, and potential risks for human health, as proposed by the interdisciplinary concept of One Health.
Collapse
Affiliation(s)
- Chiara Frazzoli
- a External Relations Office , Istituto Superiore di Sanità , Rome , Italy
| | - Beatrice Bocca
- b Bioelements and Health Unit, Department of Environment and Primary Prevention , Istituto Superiore di Sanità , Rome , Italy
| | - Alberto Mantovani
- c Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
7
|
Chin WWL, Parmentier J, Widzinski M, Tan EH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci 2014; 103:2980-99. [PMID: 25099918 DOI: 10.1002/jps.24098] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 11/07/2022]
Abstract
Particle size reduction can be used for enhancing the dissolution of poorly water-soluble drugs in order to enhance bioavailability. In nanosuspensions, the particle size of the drug is reduced to nanometer size. Nanosuspensions after downstream processing into drug products have successfully shown its impact on formulation design, the augmentation of product life cycle, patent life, and therapeutic efficacy. Formulation considerations for the nanosuspension formulation, its processing into a solid form, and aspects of material characterization are discussed. Technology assessments and feasibility of upstream processes for nanoparticle creation, and subsequently transformation into a drug product via the downstream processes have been reviewed. This paper aims to bridge formulation and process considerations along with patent reviews and may provide further insight into understanding the science and the white space. An analysis of current patent outlook and future trends is described to fully understand the limitations and opportunities in intellectual property generation.
Collapse
Affiliation(s)
- William Wei Lim Chin
- AbbVie Pte Ltd., Global Pharmaceutical Research and Development, 11 Biopolis Way, Helios #05-06, 138667, Singapore
| | | | | | | | | |
Collapse
|
8
|
Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014; 8:465-76. [PMID: 23586395 DOI: 10.3109/17435390.2013.796534] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Structure toxicity relationship analysis was conducted using principal component analysis (PCA) for a panel of nanoparticles that included dry powders of oxides of titanium, zinc, cerium and silicon, dry powders of silvers, suspensions of polystyrene latex beads and dry particles of carbon black, nanotubes and fullerene, as well as diesel exhaust particles. Acute in vitro toxicity was assessed by different measures of cell viability, apoptosis and necrosis, haemolytic effects and the impact on cell morphology, while structural properties were characterised by particle size and size distribution, surface area, morphology, metal content, reactivity, free radical generation and zeta potential. Different acute toxicity measures were processed using PCA that classified the particles and identified four materials with an acute toxicity profile: zinc oxide, polystyrene latex amine, nanotubes and nickel oxide. PCA and contribution plot analysis then focused on identifying the structural properties that could determine the acute cytotoxicity of these four materials. It was found that metal content was an explanatory variable for acute toxicity associated with zinc oxide and nickel oxide, while high aspect ratio appeared the most important feature in nanotubes. Particle charge was considered as a determinant for high toxicity of polystyrene latex amine.
Collapse
Affiliation(s)
- Xue Z Wang
- Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds , Leeds LS2 9JT , UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Gagné F, Turcotte P, Auclair J, Gagnon C. The effects of zinc oxide nanoparticles on the metallome in freshwater mussels. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:22-8. [PMID: 23570753 DOI: 10.1016/j.cbpc.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 12/27/2022]
Abstract
The use of zinc oxide nanoparticles (nanoZnO) as sunscreens has raised concerns about their safety and release in the aquatic environment through swimming activities and within municipally treated wastewaters. This study's purpose was to examine the effects of nanoZnO on the elemental composition (metallome) in exposed freshwater mussels, Elliptio complanata. Mussels were exposed for 21 days to an environmentally realistic (low) concentration (2 μg/L) of nanoZnO and zinc chloride. The mussels were also exposed to a physically and chemically treated municipal effluent (ME), both alone and in the presence of both forms of Zn. The metallome profile was characterized by the following 15 elements in gills, digestive gland and gonad tissues: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, V and Zn. The levels of metallothioneins (MT) and lipid peroxidation (LPO) in the digestive gland were also measured as biomarkers of toxic effects. The data revealed that exposure to nanoZnO increased the total levels of Zn, MT and LPO in the digestive gland. Discriminate function analysis revealed that the digestive gland responded the most to exposure to either nanoZnO or Zn(2+). For nanoZnO, the observed changes in Al, As and Mo in the digestive gland offered the best discrimination from dissolved Zn(2+). Co-exposure of nanoZnO with the ME changed the metallome profile closer to dissolved Zn(2+), suggesting a common interaction site within the ME. This was observed in changes in Ni, Cu, Se and Zn in the digestive gland of exposed mussels. Canonical analysis of essential and non-essential elements revealed that exposure to nanoZnO increased the relationships between LPO and the sum of essential elements in the digestive gland. Conversely, exposure to dissolved Zn(2+) and the ME decreased the relationship between the sum of non-essential elements and LPO and MT. In conclusion, the use of a "metallomic" approach was used to discriminate changes following exposure to nanoZnO and dissolved Zn in freshwater mussels and provided insights into the interaction of forms of Zn in ME towards mussels.
Collapse
Affiliation(s)
- F Gagné
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada, 105 McGill, Montréal, QC, Canada H2Y 2E7.
| | | | | | | |
Collapse
|
10
|
MacPhail RC, Grulke EA, Yokel RA. Assessing nanoparticle risk poses prodigious challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:374-87. [PMID: 23568806 DOI: 10.1002/wnan.1216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Risk assessment is used both formally and informally to estimate the likelihood of an adverse event occurring, for example, as a consequence of exposure to a hazardous chemical, drug, or other agent. Formal risk assessments in government regulatory agencies have a long history of practice. The precision with which risk can be estimated is inevitably constrained, however, by uncertainties arising from the lack of pertinent data. Developing accurate risk assessments for nanoparticles and nanoparticle-containing products may present further challenges because of the unique properties of the particles, uncertainties about their composition and the populations exposed to them, and how these may change throughout the particle's life cycle. This review introduces the evolving practice of risk assessment followed by some of the uncertainties that need to be addressed to improve our understanding of nanoparticle risks. Given the clarion call for life-cycle assessments of nanoparticles, an unprecedented degree of national and international coordination between scientific organizations, regulatory agencies, and stakeholders will be required to achieve this goal.
Collapse
Affiliation(s)
- Robert C MacPhail
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
11
|
Schug TT, Johnson AF, Balshaw DM, Garantziotis S, Walker NJ, Weis C, Nadadur SS, Birnbaum LS. ONE Nano: NIEHS's strategic initiative on the health and safety effects of engineered nanomaterials. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:410-414. [PMID: 23407114 PMCID: PMC3620765 DOI: 10.1289/ehp.1206091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND The past decade has seen tremendous expansion in the production and application of engineered nanomaterials (ENMs). The unique properties that make ENMs useful in the marketplace also make their interactions with biological systems difficult to anticipate and critically important to explore. Currently, little is known about the health effects of human exposure to these materials. OBJECTIVES As part of its role in supporting the National Nanotechnology Initiative, the National Institute of Environmental Health Sciences (NIEHS) has developed an integrated, strategic research program-"ONE Nano"-to increase our fundamental understanding of how ENMs interact with living systems, to develop predictive models for quantifying ENM exposure and assessing ENM health impacts, and to guide the design of second-generation ENMs to minimize adverse health effects. DISCUSSION The NIEHS's research investments in ENM health and safety include extramural grants and grantee consortia, intramural research activities, and toxicological studies being conducted by the National Toxicology Program (NTP). These efforts have enhanced collaboration within the nanotechnology research community and produced toxicological profiles for selected ENMs, as well as improved methods and protocols for conducting in vitro and in vivo studies to assess ENM health effects. CONCLUSION By drawing upon the strengths of the NIEHS's intramural, extramural, and NTP programs and establishing productive partnerships with other institutes and agencies across the federal government, the NIEHS's strategic ONE Nano program is working toward new advances to improve our understanding of the health impacts of engineered nanomaterials and support the goals of the National Nanotechnology Initiative.
Collapse
Affiliation(s)
- Thaddeus T Schug
- Cellular, Organs and Systems Pathobiology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina 27560, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ud-Daula A, Pfister G, Schramm KW. Method for toxicity test of titanium dioxide nanoparticles in ciliate protozoan Tetrahymena. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1343-1348. [PMID: 23705610 DOI: 10.1080/10934529.2013.781878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles have a high surface-to-mass ratio and rapidly aggregate in water causing great difficulties for toxicity test exposed to aquatic organisms or other cell lines. This study uses a cell viability kit for routine toxicity test of TiO2 as well as other nanoparticles which accumulate in the aquatic environment. Tetrahymena immediately endocytoses TiO2 nanoparticles and stores them in food vacuoles until the particles undergo exocytosis as larger aggregates. However, during the process of endocytosis and exocytosis, TiO2 particles interfere with cell growth and consequently induce acute toxicity. It exerted high cell growth inhibition at 20 h incubation and induces significant cytotoxic effects. Surprisingly, the effect of TiO2 decreases at 40 h incubation, due to the recovery of cell growth and reduction of the cytotoxicity of the particles.
Collapse
Affiliation(s)
- Asad Ud-Daula
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Neuherberg, Germany.
| | | | | |
Collapse
|
13
|
Sundaram SK, Sacksteder CA, Weber TJ, Riley BJ, Addleman RS, Harrer BJ, Peterman JW. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology. Nanomedicine (Lond) 2012; 8:145-56. [PMID: 23256497 DOI: 10.2217/nnm.12.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.
Collapse
Affiliation(s)
- S K Sundaram
- Kazuo Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In this review, recent reports on the biocompatibility of mesoporous silica nanoparticles (MSNs) are reviewed, with special emphasis being paid to the correlations between MSNs' structural and compositional features and their biological effects on various cells and tissues. First, the different synthetic routes used to produce the most common types of MSNs and the various methods employed to functionalize their surfaces are discussed. This is, however, done only briefly because of the focus of the review being the biocompatibility of the materials. Similarly, the biological applications of MSNs in areas such as drug and gene delivery, biocatalysis, bioimaging, and biosensing are briefly introduced. Many examples have also been mentioned about the biological applications of MSNs while discussing the materials' biocompatibility. The cytotoxicity of different types of MSNs and the effects of their various structural characteristics on their biological activities, which are the focus of this review, are then described in detail. In addition, synthetic strategies developed to reduce or eliminate any possible negative biological effects associated with MSNs or to improve their biocompatibility, as necessary, are illustrated. At the same time, recent reports on the interactions between MSNs and various in vivo or in vitro biological systems, plus our opinions and remarks on what the future may hold for this field, are included.
Collapse
Affiliation(s)
- Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
15
|
Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 2011; 256:227-40. [PMID: 21856324 DOI: 10.1016/j.taap.2011.07.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/14/2022]
Abstract
The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (~25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 μg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications.
Collapse
Affiliation(s)
- Hilary Afeseh Ngwa
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mohamed BM, Verma NK, Prina-Mello A, Williams Y, Davies AM, Bakos G, Tormey L, Edwards C, Hanrahan J, Salvati A, Lynch I, Dawson K, Kelleher D, Volkov Y. Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnology 2011; 9:29. [PMID: 21801388 PMCID: PMC3164618 DOI: 10.1186/1477-3155-9-29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/29/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nanomaterials such as SiO2 nanoparticles (SiO2NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO2NP becomes crucial in order to assess their complete safe applicability limits. RESULTS In this study, human monocytic leukemia cell line THP-1 and human alveolar epithelial cell line A549 were exposed to a range of amorphous SiO2NP of various sizes and concentrations (0.01, 0.1 and 0.5 mg/ml). Key biological indicators of cellular functions including cell population density, cellular morphology, membrane permeability, lysosomal mass/pH and activation of transcription factor-2 (ATF-2) were evaluated utilizing quantitative high content screening (HCS) approach and biochemical techniques. Despite the use of extremely high nanoparticle concentrations, our findings showed a low degree of cytotoxicity within the panel of SiO2NP investigated. However, at these concentrations, we observed the onset of stress-related cellular response induced by SiO2NP. Interestingly, cells exposed to alumina-coated SiO2NP showed low level, and in some cases complete absence, of stress response and this was consistent up to the highest dose of 0.5 mg/ml. CONCLUSIONS The present study demonstrates and highlights the importance of subtle biological changes downstream of primary membrane and endocytosis-associated phenomena resulting from high dose SiO2NP exposure. Increased activation of transcription factors, such as ATF-2, was quantitatively assessed as a function of i) human cell line specific stress-response, ii) SiO2NP size and iii) concentration. Despite the low level of cytotoxicity detected for the amorphous SiO2NP investigated, these findings prompt an in-depth focus for future SiO2NP-cell/tissue investigations based on the combined analysis of more subtle signalling pathways associated with accumulation mechanisms, which is essential for establishing the bio-safety of existing and new nanomaterials.
Collapse
Affiliation(s)
- Bashir Mustafa Mohamed
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Navin Kumar Verma
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Adriele Prina-Mello
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Naughton Institute, Trinity College Dublin, Dublin2, Ireland
| | - Yvonne Williams
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Anthony M Davies
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Gabor Bakos
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Laragh Tormey
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Connla Edwards
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - John Hanrahan
- Glantreo Ltd., Environmental Research Institute (ERI) Building, Lee Road, Cork, Ireland
| | - Anna Salvati
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Iseult Lynch
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Kenneth Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin4, Ireland
| | - Dermot Kelleher
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
| | - Yuri Volkov
- Department of clinical medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Naughton Institute, Trinity College Dublin, Dublin2, Ireland
| |
Collapse
|
17
|
Peng J, Liu S, Yan S, Fan X, He Y. A study on the interaction between CdTe quantum dots and chymotrypsin using optical spectroscopy. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Brar SK, Verma M, Tyagi RD, Surampalli RY. Engineered nanoparticles in wastewater and wastewater sludge--evidence and impacts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:504-20. [PMID: 19926463 DOI: 10.1016/j.wasman.2009.10.012] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/30/2009] [Accepted: 10/20/2009] [Indexed: 05/24/2023]
Abstract
Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles--consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.
Collapse
Affiliation(s)
- Satinder K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada.
| | | | | | | |
Collapse
|
19
|
Senevirathna W, Kiro R, Rosen R, Popov I, Belkin S, Wells M. CdSe quantum dots induce superoxide stress in engineered biosensor bacteria. Nanotoxicology 2009. [DOI: 10.1080/17435390802546089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Abstract
At present, more than 20 countries worldwide are manufacturing and marketing different varieties of nanotech-based consumer products of which cosmetics form the largest category. Due to the extremely small size of the nanoparticles (NPs) being used, there is a concern that they may interact directly with macromolecules such as DNA. The present study was aimed to assess the genotoxicity of zinc oxide (ZnO) NPs, one of the widely used ingredients of cosmetics, and other dermatological preparations in human epidermal cell line (A431). A reduction in cell viability as a function of both NP concentration as well as exposure time was observed. ZnO NPs demonstrated a DNA damaging potential as evident from an increased Olive tail moment (OTM) of 2.13 +/- 0.12 (0.8 g/ml) compared to control 1.37 +/- 0.12 in the Comet assay after an exposure of 6 h. ZnO NPs were also found to induce oxidative stress in cells indicated by depletion of glutathione (59% and 51%); catalase (64% and 55%) and superoxide dismutase (72% and 75%) at 0.8 and 0.08 g/ml respectively. Our data demonstrates that ZnO NPs even at low concentrations possess a genotoxic potential in human epidermal cells which may be mediated through lipid peroxidation and oxidative stress. Hence, caution should be taken in their use in dermatological preparations as well as while handling.
Collapse
|
21
|
Kang JS, Yum YN, Kim JH, Song HA, Jeong JY, Lim YT, Chung BH, Park SN. Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.1.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Lison D, Thomassen LCJ, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CEA, Martens JA. Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 2008; 104:155-62. [PMID: 18400775 DOI: 10.1093/toxsci/kfn072] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because of their small size and large specific surface area (SA), insoluble nanoparticles are almost not affected by the gravitational force and are generally formulated in stable suspensions or sols. This raises, however, a potential difficulty in in vitro assay systems in which cells adhering to the bottom of a culture vessel may not be exposed to the majority of nanoparticles in suspension. J. G. Teeguarden et al., 2007, Toxicol. Sci. 95, 300-312 have recently addressed this issue theoretically, emphasizing the need to characterize the effective dose (mass or number or SA dose of particles that affect the cells) which, according to their model based on sedimentation and gravitation forces, might only represent a very small fraction of the nominal dose. We hypothesized, in contrast, that because of convection forces that usually develop in sols, the majority of the particles may reach the target cells and exert their potential toxicity. To address this issue, we exposed three different cell lines (A549 epithelial cells, EAHY926 endothelial cells, and J774 monocyte-macrophages) to a monodisperse suspension of Stöber silica nanoparticles (SNP) in three different laboratories. Four different end points (lacticodehydrogenase [LDH] release, LDH cell content, tetrazolium salt (MTT), and crystal violet staining) were used to assess the cell response to nanoparticles. We found, in all cell lines and for all end points, that the cellular response was determined by the total mass/number/SA of particles as well as their concentration. Practically, for a given volume of dispersion, both parameters are of course intimately interdependent. We conclude that the nominal dose remains the most appropriate metric for in vitro toxicity testing of insoluble SNP dispersed in aqueous medium. This observation has important bearings on the experimental design and the interpretation of in vitro toxicological studies with nanoparticles.
Collapse
Affiliation(s)
- Dominique Lison
- Industrial Toxicology and Occupational Medicine Unit, Université Catholique de Louvain, Avenue E. Mounier 53.02, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shen XC, Liou XY, Ye LP, Liang H, Wang ZY. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J Colloid Interface Sci 2007; 311:400-6. [PMID: 17433354 DOI: 10.1016/j.jcis.2007.03.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
The interaction between human adult hemoglobin (Hb) and bare CdS quantum dots (QDs) was investigated by fluorescence, synchronous fluorescence, circular dichroism (CD), and Raman spectroscopic techniques under physiological pH 7.43. The intrinsic fluorescence of Hb is statically quenched by CdS QDs. The quenching obeys the Stern-Volmer equation, with an order of magnitude of binding constant (K) of 10(7). The electrostatic adsorption of Hb on the cationic CdS QDs surface is energetically favorable (DeltaS(0)=70.22 Jmol(-1)K(-1), DeltaH(0)=-23.11 kJmol(-1)). The red shift of synchronous fluorescence spectra revealed that the microenvironments of tryptophan and tyrosine residues at the alpha(1)beta(2) interface of Hb are disturbed by CdS QDs, which are induced from hydrophobic cavities to a more exposed or hydrophilic surrounding. The secondary structure of the adsorbed Hb has a loose or extended conformation for which the content of alpha-helix has decreased from 72.5 to 60.8%. Moreover, Raman spectra results indicated that the sulfur atoms of the cysteine residues form direct chemical bonds on the surface of the CdS QDs. The binding does not significantly affect the spin state of the heme iron, and deoxidation is not expected to take place on the coated oxyhemoglobin. The change of orientation of heme vinyl groups was also detected.
Collapse
Affiliation(s)
- Xing-Can Shen
- College of Chemistry and Chemical Engineering, Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, Guangxi Normal University, 15 YuCai Road, Guilin 541004, People's Republic of China.
| | | | | | | | | |
Collapse
|
24
|
Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A. Controlling the cellular uptake of gold nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1596-9. [PMID: 17279633 PMCID: PMC2818780 DOI: 10.1021/la062642r] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Gold nanorods coated with cetyltrimethylammonium bromide (CTAB), a cationic micellar surfactant used in nanorod synthesis, were rapidly and irreversibly internalized by KB cells via a nonspecific uptake mechanism. Internalized nanorods near the cell surface were monitored by two-photon luminescence (TPL) microscopy and observed to migrate toward the nucleus with a quadratic rate of diffusion. The internalized nanorods were not excreted but formed permanent aggregates within the cells, which remained healthy and grew to confluence over a 5-day period. Nonspecific nanorod uptake could be greatly reduced by displacing the CTAB surfactant layer with chemisorptive surfactants, particularly by the conjugation of poly(ethylene glycol) chains onto nanorods using in situ dithiocarbamate formation.
Collapse
Affiliation(s)
- Terry B. Huff
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Matthew N. Hansen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yan Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ji-Xin Cheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
25
|
Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Antony VB, Moudgil BM. Influence of shape, adhension and simulated lung mechanics on amorphous silica nanoparticle toxicity. ADV POWDER TECHNOL 2007. [DOI: 10.1163/156855207779768214] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Albertini R, Bird M, Doerrer N, Needham L, Robison S, Sheldon L, Zenick H. The use of biomonitoring data in exposure and human health risk assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1755-62. [PMID: 17107864 PMCID: PMC1665402 DOI: 10.1289/ehp.9056] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/19/2006] [Indexed: 05/12/2023]
Abstract
Biomonitoring uses analytic methods that permit the accurate measurement of low levels of environmental chemicals in human tissues. However, depending on the intended use, biomonitoring, like all exposure tools, may not be a stand-alone exposure assessment tool for some of its environmental public health uses. Although biomonitoring data demonstrate that many environmental chemicals are absorbed in human tissues, uncertainty exists regarding if and at what concentrations many of these chemicals cause adverse health outcomes. Moreover, without exposure pathway information, it is difficult to relate biomonitoring results to sources and routes of exposure and develop effective health risk management strategies. In September 2004, the Health and Environmental Sciences Institute, U.S. Environmental Protection Agency, Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry, and International Council of Chemical Associations co-sponsored the International Biomonitoring Workshop, which explored the processes and information needed for placing biomonitoring data into perspective for risk assessment purposes, with special emphasis on integrating biomarker measurements of exposure, internal dose, and potential health outcome. Scientists from international governments, academia, and industry recommended criteria for applying biomonitoring data for various uses. Six case studies, which are part of this mini-monograph, were examined: inorganic arsenic, methyl eugenol, organophosphorus pesticides, perfluorooctanesulfonate, phthalates, and polybrominated diphenyl ethers. Based on the workshop and follow-up discussions, this overview article summarizes lessons learned, identifies data gaps, outlines research needs, and offers guidance for designing and conducting biomonitoring studies, as well as interpreting biomonitoring data in the context of risk assessment and risk management.
Collapse
Affiliation(s)
| | - Michael Bird
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Nancy Doerrer
- International Life Sciences Institute, Health and Environmental Sciences Institute, Washington, DC, USA
| | - Larry Needham
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Linda Sheldon
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Harold Zenick
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|