1
|
Zarus GM, Ruiz P, Benedict R, Brenner S, Carlson K, Jeong L, Morata TC. Which Environmental Pollutants Are Toxic to Our Ears?-Evidence of the Ototoxicity of Common Substances. TOXICS 2024; 12:650. [PMID: 39330578 PMCID: PMC11435700 DOI: 10.3390/toxics12090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Ototoxicity refers to the adverse effects of substances on auditory or vestibular functions. This study examines the evidence of ototoxicity's association with exposure to common environmental pollutants, as documented in toxicological profiles by the Agency for Toxic Substances and Disease Registry. Our aim was to evaluate whether the evidence supports modifying the charting of ototoxic effects in the summary tables of these toxicological profiles and providing a guide for scientists to access these data. Health outcomes of interest included hearing loss, vestibular effects, cochlear lesions, tonal alterations, cellular damage, and ototoxicity-related outcomes (neurological, nephrotoxic, hepatic, and developmental effects). We obtained ototoxicity information for 62 substances. Hearing-related effects were reported, along with neurological effects. Overall, 26 profiles reported strong evidence of ototoxicity, including 13 substances previously designated as ototoxic by other health and safety agencies. Commonly studied outcomes included hearing loss, damage to ear anatomy, and auditory dysfunction. Vestibular dysfunction and tinnitus are rarely studied. Our findings highlight the lack of conclusive evidence of ototoxic properties for many substances, especially for pesticides and herbicides. This review supports charting the evidence of ototoxicity separately in toxicological profiles' summary tables. Improving the communication of ototoxicity-related health effects might impact their recognition and prompt further research. A stronger evidence base could support improved prevention efforts in terms of serious health outcomes.
Collapse
Affiliation(s)
- Gregory M. Zarus
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Rae Benedict
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Stephan Brenner
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Krystin Carlson
- National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA; (K.C.); (T.C.M.)
| | - Layna Jeong
- Georgia Tech School of Biological Sciences, Atlanta, GA 30332, USA;
| | - Thais C. Morata
- National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA; (K.C.); (T.C.M.)
| |
Collapse
|
2
|
Pugh DB, Saxena A, Barta LE, Pinkerton C, Bajic J, Boettcher BT, Woehlck HJ. A Case Report of Hypotension and Methemoglobinemia Associated With Gunshot Residue Poisoning: Nitrite-Induced Methemoglobinemia. A A Pract 2022; 16:e01631. [PMID: 36599025 DOI: 10.1213/xaa.0000000000001631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A patient with gunshots within inches of the skin developed intraoperative vasodilatory hypotension and methemoglobinemia, both recognized consequences of nitrite poisoning. A 1- mg/kg dose of methylene blue transiently and partially reversed methemoglobinemia, but the color of the methylene blue faded rapidly, consistent with bleaching of methylene blue by nitrite in vivo. Methylene blue did not raise blood pressure, consistent with inhibition of nitric oxide (NO) synthase. Because NO production from nitrite uses an NO synthase (NOS)-independent pathway, methylene blue is expected to have little effect on reversing hypotension from nitrite poisoning. Consider nitrite toxicity in gunshot patients with refractory vasodilatory hypotension and elevated methemoglobin.
Collapse
Affiliation(s)
- David B Pugh
- From the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | | | | | |
Collapse
|
3
|
Jung GL, McDaniel KL, LoPachin RM, Geohagen BC, Smith A, Huffstickler M, Herr DW. IN VIVO NEUROPHYSIOLOGICAL ASSESSMENT OF IN SILICO PREDICTIONS OF NEUROTOXICITY: CITRONELLAL, 3,4-DICHLORO-1-BUTENE, AND BENZYL BROMOACETATE. Neurotoxicology 2022; 90:48-61. [PMID: 35227730 PMCID: PMC9133174 DOI: 10.1016/j.neuro.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Neurotoxicants may be widespread in the environment and can produce serious health impacts in the human population. Screening programs that use in vitro methods have generated data for thousands of chemicals. However, these methods often do not evaluate repeated or prolonged exposures, which are required for many neurotoxic outcomes. Additionally, the data produced by such screening methods may not include mechanisms which play critical biological roles necessary for in vivo neurotoxicity. The Hard and Soft Acids and Bases (HSAB) in silico model focuses on chemical structure and electrophilic properties which are important to the formation of protein adducts. A group of structurally diverse chemicals have been evaluated with an in silico screening approach incorporating HSAB parameters. However, the predictions from the expanded chemical space have not been evaluated using in vivo methods. Three chemicals predicted to be cumulative toxicants were selected for in vivo neurotoxicological testing. Adult male Long-Evans rats were treated orally with citronellal (CIT), 3,4-dichloro-1-butene (DCB), or benzyl bromoacetate (BBA) for 8 weeks. Behavioral observations were recorded weekly to assess motor function. Peripheral neurophysiological measurements were derived from nerve excitability (NE) tests which involved compound muscle action potentials (CMAPs) in the tail and foot, and mixed nerve action potentials (MNAPs) in the tail. Compound nerve action potentials (CNAPs) and nerve conduction velocity (NCV) in the tail were also quantified. Peripheral inputs into the central nervous system were examined using somatosensory evoked potentials recorded from the cortex (SEPCTX) and cerebellum (SEPCEREB). CIT or BBA did not result in significant alterations to peripheral nerve or somatosensory function. DCB reduced grip-strength and altered peripheral nerve function. The MNAPs required less current to reach 50% amplitude and had a lower calculated rheobase, suggesting increased excitability. Increased CNAP amplitudes and greater NCV were also observed. Novel changes were found in the SEPCTX with an abnormal peak forming in the early portion of the waveforms of treated rats, and decreased latencies and increased amplitudes were observed in SEPCEREB recordings. These data contribute to testing an expanded chemical space from an in silico HSAB model for predicting cumulative neurotoxicity and may assist with prioritizing chemicals to protect human health.
Collapse
Affiliation(s)
- Garyn L Jung
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Katherine L McDaniel
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Richard M LoPachin
- Professor Emeritus in the Department of Anesthesiology, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY 10467, USA.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY 10467, USA.
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830, USA.
| | | | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
4
|
Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. FRONTIERS IN TOXICOLOGY 2021; 3:1. [PMID: 34966904 PMCID: PMC8711081 DOI: 10.3389/ftox.2021.729788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity in nerves was discovered. Such discoveries have led to a variety of neurophysiological techniques, ranging from basic neuroscience to clinical applications. These clinical applications allow assessment of complex neurological functions such as (but not limited to) sensory perception (vision, hearing, somatosensory function), and muscle function. The ability to use similar techniques in both humans and animal models increases the ability to perform mechanistic research to investigate neurological problems. Good animal to human homology of many neurophysiological systems facilitates interpretation of data to provide cause-effect linkages to epidemiological findings. Mechanistic cellular research to screen for toxicity often includes gaps between cellular and whole animal/person neurophysiological changes, preventing understanding of the complete function of the nervous system. Building Adverse Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines, neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing, revision). Scientists need to determine intermediate levels of nervous system organization that are related to an AO and work both upstream and downstream using mechanistic approaches. Possibly more than any other organ, the brain will require networks of pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological techniques should be incorporated into these AOP-base neurotoxicological assessments, including interactions between many regions of the brain simultaneously. Coupled with advancements in optogenetic manipulation, complex functions of the nervous system (such as acquisition, attention, sensory perception, etc.) can be examined in real time. The integration of neurophysiological changes with changes in gene/protein expression can begin to provide the mechanistic underpinnings for biological changes. Establishment of linkages between changes in cellular physiology and those at the level of the AO will allow construction of biological pathways (AOPs) and allow development of higher throughput assays to test for changes to critical physiological circuits. To allow mechanistic/predictive toxicology of the nervous system to be protective of human populations, neuroelectrophysiology has a critical role in our future.
Collapse
Affiliation(s)
- David W. Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Washington, NC, United States
| |
Collapse
|
5
|
Abe K, Shimohira K, Miki Y, Hirose Y, Ohira SI, Toda K. Measurement Device for Ambient Carbonyl Sulfide by Means of Catalytic Reduction Followed by Wet Scrubbing/Fluorescence Detection. ACS OMEGA 2020; 5:25704-25711. [PMID: 33073096 PMCID: PMC7557214 DOI: 10.1021/acsomega.0c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
A portable chemical analysis system for monitoring ambient carbonyl sulfide (COS) was investigated for the first time. COS is paid attention to from the perspectives of photosynthesis tracer, breath diagnosis marker, and new process-use in the manufacture of semiconductors. Recently, the threshold level value of COS was settled at 5 ppm in volume ratio (ppmv) for workplace safety management. In this work, COS was converted to H2S by a small column packed with alumina catalyzer at 65 °C. Then, the H2S produced was collected in a small channel scrubber to react with fluorescein mercuric acetate (FMA), and the resulting fluorescence quenching was monitored using an LED/photodiode-based miniature detector. The miniature channel scrubber was re-examined to determine its robustness and easy fabrication, and conditions of the catalyzer were optimized. When the FMA concentration used was 1 μM, the limit of detection and dynamic range, which were both proportional to the FMA concentration, were 0.07 and 25 ppbv, respectively. Ambient COS in the background level and even contaminated COS in the nitrogen gas cylinder could be detected. If necessary, H2S was removed selectively by reproducible adsorbent columns. COS concentrations of engine exhaust were measured by the proposed method and by cryo-trap-gas chromatography-flame photometric detection, and the results obtained (0.5-5.9 ppbv) by the two methods agreed well (R 2 = 0.945, n = 19). COS in ambient air and exhaust gases was successfully measured without any batchwise pretreatment.
Collapse
Affiliation(s)
- Kodai Abe
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Koki Shimohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Yusuke Miki
- Tsukuba
Laboratory, Taiyo Nippon Sanso Co., 10 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Yasuo Hirose
- Tsukuba
Laboratory, Taiyo Nippon Sanso Co., 10 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Herr DW, Freeborn DL, Degn L, Martin SA, Ortenzio J, Pantlin L, Hamm CW, Boyes WK. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors. Neurotoxicol Teratol 2016; 54:78-88. [DOI: 10.1016/j.ntt.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
|
7
|
Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon. Toxicol Appl Pharmacol 2015; 282:184-94. [DOI: 10.1016/j.taap.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023]
|
8
|
Gok DK, Akpinar D, Hidisoglu E, Ozen S, Agar A, Yargicoglu P. The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats. Electromagn Biol Med 2014; 35:65-74. [PMID: 25496054 DOI: 10.3109/15368378.2014.987923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.
Collapse
Affiliation(s)
- Deniz Kantar Gok
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Deniz Akpinar
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Enis Hidisoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Sukru Ozen
- b Department of Electrical and Electronics Engineering , Engineering Faculty, Akdeniz University , Antalya , Turkey , and
| | - Aysel Agar
- c Department of Physiology , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| | - Piraye Yargicoglu
- a Department of Biophysics , Faculty of Medicine, Akdeniz University , Antalya , Turkey
| |
Collapse
|
9
|
Boyes WK, Degn LL, Martin SA, Lyke DF, Hamm CW, Herr DW. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors. Neurotoxicol Teratol 2014; 43:1-10. [DOI: 10.1016/j.ntt.2014.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
|
10
|
Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B, Agar A. Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain. Food Chem Toxicol 2013; 52:129-36. [DOI: 10.1016/j.fct.2012.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
11
|
Ribes D, Torrente M, Vicens P, Colomina MT, Gómez M, Domingo JL. Recognition Memory and β-amyloid Plaques in Adult Tg2576 Mice are not Modified After Oral Exposure to Aluminum. Alzheimer Dis Assoc Disord 2012; 26:179-85. [DOI: 10.1097/wad.0b013e3182211ab1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Differential expression profiles of Alternaria alternate genes in response to carbonyl sulfide fumigation. J Microbiol 2010; 48:480-5. [PMID: 20799090 DOI: 10.1007/s12275-010-9301-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 05/11/2010] [Indexed: 12/21/2022]
Abstract
Carbonyl sulfide (COS) is a new fumigant used in phytosanitary treatments. It was developed as a potential alternative to methyl bromide, which is being phased out because of its ozone-depletion properties. To understand the molecular and cellular mechanisms occurring in fungal pathogens in response to COS fumigation, we cloned 510 cDNA fragments of Alternaria alternata (Fr.) Keissler genes that are differentially expressed; these genes were cloned using suppression subtractive hybridization. Changes in the levels of transcripts of 79 fragments were confirmed by microarray analysis and qRT-PCR. Further homology search revealed that they are highly homologous to 41 genes of other fungi, which were related to general metabolism, growth and division, defense, cellular transport, and signal transduction. These results provide an overview of differential expression profiles of A. alternata genes following COS treatment and some new clues about the mechanism of COS fungitoxicity.
Collapse
|
13
|
Cartwright ME, Petruska J, Arezzo J, Frank D, Litwak M, Morrissey RE, MacDonald J, Davis TE. Phospholipidosis in Neurons Caused by Posaconazole, without Evidence for Functional Neurologic Effects. Toxicol Pathol 2009; 37:902-10. [DOI: 10.1177/0192623309348521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The azole antifungal drug posaconazole caused phospholipidosis in neurons of the central nervous system, dorsal root ganglia of the spinal cord, and myenteric plexus in chronic toxicity studies in dogs. The time of onset, light and electron microscopic features, neurologic and electrophysiologic effects on the central and peripheral nervous systems, and potential for regression were investigated in a series of studies with a duration of up to one year. Nuclei of the medulla oblongata were the prominently affected areas of the brain. Neurons contained cytoplasmic vacuoles with concentrically whorled plasma membrane-like material (i.e., multilamellar bodies) morphologically identical to that commonly caused in other tissues by cationic amphiphilic drugs. Some axons in the brain and spinal cord were swollen and contained granular eosinophilic, electron-dense lysosomes. There were no features suggesting degeneration or necrosis of neurons or any associated elements of nervous tissue. The earliest and most consistent onset was in neurons of dorsal root ganglia. The observed neural phospholipidosis did not result in any alteration in the amplitude or latency of the auditory, visual, or somatosensory evoked potentials. The histopathologic changes did not progress or regress within the three-month postdose period. The results indicate that phospholipidosis can be induced in central and peripheral neurons of dogs by administration of posaconazole, but this change is not associated with functional effects in the systems evaluated.
Collapse
Affiliation(s)
| | | | | | - Doyle Frank
- Schering-Plough Research Institute, Lafayette, NJ 07848
| | - Mona Litwak
- Albert Einstein School of Medicine, Bronx, NY 10461
| | | | | | | |
Collapse
|
14
|
Strain GM, Banasik M, Hardy M, Stedeford T. Tetrabromobisphenol A (TBBPA) and model-derived risks for neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology 2009; 260:155-7; author reply 158-61. [DOI: 10.1016/j.tox.2009.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
|
15
|
Morrison JP, Ton TV, Collins JB, Switzer RC, Little PB, Morgan DL, Sills RC. Gene Expression Studies Reveal That DNA Damage, Vascular Perturbation, and Inflammation Contribute to the Pathogenesis of Carbonyl Sulfide Neurotoxicity. Toxicol Pathol 2009; 37:502-11. [DOI: 10.1177/0192623309335631] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbonyl sulfide (COS) is an odorless gas that produces highly reproducible lesions in the central nervous system. In the present study, the time course for the development of the neurotoxicological lesions was defined and the gene expression changes occurring in the posterior colliculus upon exposure to COS were characterized. Fischer 344 rats were exposed to 0 or 500 ppm COS for one, two, three, four, five, eight, or ten days, six hours per day. On days 1 and 2, no morphological changes were detected; on day 3, 10/10 (100%) rats had necrosis in the posterior colliculi; and on day 4 and later, necrosis was observed in numerous areas of the brain. Important gene expression changes occurring in the posterior colliculi after one or two days of COS exposure that were predictive of the subsequent morphological findings included up-regulation of genes associated with DNA damage and G1/S checkpoint regulation (KLF4, BTG2, GADD45g), apoptosis (TGM2, GADD45g, RIPK3), and vascular mediators (ADAMTS, CTGF, CYR61, VEGFC). Proinflammatory mediators (CCL2, CEBPD) were up-regulated prior to increases in expression of the astrocytic marker GFAP and macrophage marker CSF2rb1. These gene expression findings were predictive of later CNS lesions caused by COS exposure and serve as a model for future investigations into the mechanisms of disease in the central nervous system.
Collapse
Affiliation(s)
- James P. Morrison
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Thai-Vu Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | | | - Peter B. Little
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Daniel L. Morgan
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Bolon B, Anthony DC, Butt M, Dorman D, Green MV, Little PB, Valentine WM, Weinstock D, Yan J, Sills RC. “Current Pathology Techniques” Symposium Review: Advances and Issues in Neuropathology. Toxicol Pathol 2008. [DOI: 10.1177/0192623308322313] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our understanding of the mechanisms that incite neurological diseases has progressed rapidly in recent years, mainly owing to the advent of new research instruments and our increasingly facile ability to assemble large, complex data sets acquired across several disciplines into an integrated representation of neural function at the molecular, cellular, and systemic levels. This mini-review has been designed to communicate the principal technical advances and current issues of importance in neuropathology research today in the context of our traditional neuropathology practices. Specific topics briefly addressed in this paper include correlative biology of the many facets of the nervous system; conventional and novel methods for investigating neural structure and function; theoretical and technical issues associated with investigating neuropathology end points in emerging areas of concern (developmental neurotoxicity, neurodegenerative conditions); and challenges and opportunities that will face pathologists in this field in the foreseeable future. We have organized this information in a manner that we hope will be of interest not only to professionals with a career focus in neuropathology, but also to general pathologists who occasionally face neuropathology questions.
Collapse
Affiliation(s)
| | - Douglas C. Anthony
- University of Missouri, Department of Pathology and Anatomical Sciences, Columbia, Missouri, USA
| | - Mark Butt
- Tox Path Specialists, Walkersville, Maryland, USA
| | - David Dorman
- North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | | | - Peter B. Little
- Charles River Laboratories, Research Triangle Park, North Carolina, USA
| | | | | | - James Yan
- Hospira Inc., Lake Forest, Illinois, USA
| | - Robert C. Sills
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|