1
|
Wu PC, Wen HJ, Huang KF, Huang SK, Liang MC. Transition metals and chemical compositions determine the oxidation capacity of atmospheric particulate matters. ENVIRONMENTAL RESEARCH 2025; 278:121661. [PMID: 40268221 DOI: 10.1016/j.envres.2025.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The knowledge of the causal relationship between exposure to airborne particulate matter (PM) and respiratory-related health issues remains unsatisfactory, owing to the complexities of physical and chemical characteristics in PM. One measure that greatly lifts the complexity is oxidative potential (OP), the overall production capacity of reactive oxygen species. We analyzed PM at different size fractions from three localities, exhibiting different source emission properties and photochemical aging states. We also investigated possible causes for their OPs, which were assessed using cellular and acellular assays. We found that higher PM mass did not always yield higher OP. Instead, chemical composition, modified by photochemical alteration (particle oxidation), played a critical role in the PM's reactivity. From a pollution hot spot to a downwind country town, the PM2.5 levels (mean ± SD) were 9.3 ± 4.5, 9.7 ± 4.9, and 6.6 ± 4.7 μg/m3, respectively. In contrast, the PM mass-normalized OP values in the downwind region were approximately 20 % higher than those in the upwind region based on the cellular assay and about three times higher from the acellular assay. Enhanced PM OP is associated with atmospheric oxidation, approximated by sulfur and nitrogen oxidation ratios. We further identified transition metals, particularly copper, a single most important species group, the primary determinant to the values of OP measured, contributing directly to OP and indirectly through metal-oxides enhanced photochemical alterations to PM.
Collapse
Affiliation(s)
- Po-Chao Wu
- Environmental Governance Research Center, National Environmental Research Academy, Taoyuan, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Huang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Mao-Chang Liang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Coelho NDS, Menezes HC, Cardeal ZDL. Development of new PDMS in tube extraction microdevice for enhanced monitoring of polycyclic aromatic hydrocarbons and their derivatives in water. Talanta 2025; 281:126882. [PMID: 39298806 DOI: 10.1016/j.talanta.2024.126882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
Collapse
Affiliation(s)
- Nathan de Souza Coelho
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Helvécio Costa Menezes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Summers S, Bin-Hudari MS, Magill C, Henry T, Gutierrez T. Identification of the bacterial community that degrades phenanthrene sorbed to polystyrene nanoplastics using DNA-based stable isotope probing. Sci Rep 2024; 14:5229. [PMID: 38433255 PMCID: PMC10909871 DOI: 10.1038/s41598-024-55825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
In the Anthropocene, plastic pollution has become a new environmental biotope, the so-called plastisphere. In the oceans, nano- and micro-sized plastics are omnipresent and found in huge quantities throughout the water column and sediment, and their large surface area-to-volume ratio offers an excellent surface to which hydrophobic chemical pollutants (e.g. petrochemicals and POPs) can readily sorb to. Our understanding of the microbial communities that breakdown plastic-sorbed chemical pollutants, however, remains poor. Here, we investigated the formation of 500 nm and 1000 nm polystyrene (PS) agglomerations in natural seawater from a coastal environment, and we applied DNA-based stable isotope probing (DNA-SIP) with the 500 nm PS sorbed with isotopically-labelled phenanthrene to identify the bacterial members in the seawater community capable of degrading the hydrocarbon. Whilst we observed no significant impact of nanoplastic size on the microbial communities associated with agglomerates that formed in these experiments, these communities were, however, significantly different to those in the surrounding seawater. By DNA-SIP, we identified Arcobacteraceae, Brevundimonas, Comamonas, uncultured Comamonadaceae, Delftia, Sphingomonas and Staphylococcus, as well as the first member of the genera Acidiphilum and Pelomonas to degrade phenanthrene, and of the genera Aquabacterium, Paracoccus and Polymorphobacter to degrade a hydrocarbon. This work provides new information that feeds into our growing understanding on the fate of co-pollutants associated with nano- and microplastics in the ocean.
Collapse
Affiliation(s)
- Stephen Summers
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Singapore Centre for Environmental Life Sciences Engineering, Life Sciences Institute, National University of Singapore, Singapore, 119077, Singapore
- St John's Island National Marine Laboratory, National University of Singapore, Singapore, 098634, Singapore
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Clayton Magill
- Institute for GeoEnergy Engineering, School of Energy, Geoscience, Infrastructure and Society, The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Theodore Henry
- School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Department of Forestry Wildlife and Fisheries, Centre for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 36849, USA
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
4
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Yang C, Yi K, Zhu M, Yang J, Wei Y, Shang Y, Xu X. Photosensitive damage of dipeptides: mechanism and influence of structure. Phys Chem Chem Phys 2023; 25:4923-4928. [PMID: 36722384 DOI: 10.1039/d2cp05047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We illustrate the influence of the dipeptide structure on photosensitive damage and the kinetic mechanism was investigated using acenaphthenequinone (ACQ) as a triplet photosensitizer. With tyrosine (Tyr) serving as the core structure, two classic dipeptides with double (trptophan-tyrosine, Trp-Tyr) and single (tyrosine-alanine, Tyr-Ala and Ala-Tyr) active reaction sites were constructed, and the underlying photodamage mechanisms were investigated carefully. According to the experimental results, the proton-coupled electron transfer processes between ACQ and numerous Trp-Tyr reaction sites have independent reaction properties. The bimolecular quenching rate (kq) value is roughly equivalent to the sum of the rates of two amino acid monomers, and a novel intramolecular dynamic channel between Trp/N˙-Tyr and Trp-Tyr/O˙ was observed. The ACQ/Tyr-Ala system demonstrated the key role of steric hindrance on the kq in bimolecular reactions.
Collapse
Affiliation(s)
- Cheng Yang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Kai Yi
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Meirou Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Jiangxue Yang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinsheng Xu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
6
|
Ou L, Honda A, Miyasaka N, Akaji S, Omori I, Ishikawa R, Li Y, Ueda K, Takano H. Application of three-dimensional Raman imaging to determination of the relationship between cellular localization of diesel exhaust particles and the toxicity. Toxicol Mech Methods 2021; 32:333-340. [PMID: 34794370 DOI: 10.1080/15376516.2021.2008569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A diesel exhaust particle (DEP) is a type of particulate matter that is easily produced from combustion in a diesel power engine. It has been reported that DEPs can cause short- and long-term health problems. This is because DEPs are complex mixtures that are highly inhalable through the airways due to their small particle size. However, the relationship between intracellular localization of DEPs after their deposition in the lungs and the subsequent biological responses remains to be clarified. This is due to difficulties in distinguishing particles that are inside the cells from those that are outside. In this study, A549 human lung epithelial cells were exposed to DEPs at concentrations of 0, 25, 75, or 200 µg/mL for different periods, after that particles in the A549 cells were analyzed by three-dimensional (3D) images obtained from a Raman microscope. The cytotoxic effects of DEPs on the A549 cells were investigated by measuring cell viability, the levels of intracellular reactive oxygen species (ROS) and cell death. The Raman microscopy revealed that the particles invaded the A549 cells, and at a concentration of 200 µg/mL, they markedly decreased cell viability, increased intracellular ROS production, triggered late apoptosis/necrosis and induced nuclear damage. These results suggest that intracellular DEPs exposed at a high concentration may be highly toxic and can impair the viability of A549 cells. Furthermore, the 3D images from the Raman microscopy can be used to evaluate intracellular particle dynamics.
Collapse
Affiliation(s)
- Langying Ou
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Akiko Honda
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Sakiko Akaji
- Graduate School of Engineering, Kyoto University, Japan
| | - Issei Omori
- Graduate School of Engineering, Kyoto University, Japan
| | - Raga Ishikawa
- Graduate School of Engineering, Kyoto University, Japan
| | - Yinpeng Li
- Graduate School of Engineering, Kyoto University, Japan
| | - Kayo Ueda
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Japan.,Graduate School of Engineering, Kyoto University, Japan
| |
Collapse
|
7
|
Reynolds WJ, Bowman A, Hanson PS, Critchley A, Griffiths B, Chavan B, Birch‐Machin MA. Adaptive responses to air pollution in human dermal fibroblasts and their potential roles in aging. FASEB Bioadv 2021; 3:855-865. [PMID: 34632319 PMCID: PMC8493965 DOI: 10.1096/fba.2021-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022] Open
Abstract
The damaging effects of air pollution on the skin are becoming increasingly researched and the outcomes of this research are now a major influence in the selection and development of protective ingredients for skincare formulations. However, extensive research has not yet been conducted into the specific cellular defense systems that are being affected after exposure to such pollutants. Research investigating the affected systems is integral to the development of suitable interventions that are capable of augmenting the systems most impacted by air pollutant exposure. The following studies involved exposing primary human dermal fibroblasts to different concentrations of particulate matter and analyzing its effects on mitochondrial complex activity, nuclear factor erythroid 2-related factor 2 localization using immunocytochemistry and protein expression of electron transport chain complex proteins, sirtuin-1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) using western blotting. Particulate matter-induced alterations in both mitochondrial complex protein and activity, indicating oxidative stress, which was also complimented by increased expression of antioxidant proteins GSTP1/2 and SOD2. Particulate matter also seemed to modify expression of the proteins SIRT1 and PGC-1α which are heavily involved in the regulation of mitochondrial biogenesis and energy metabolism. Given the reported results indicating that particulate matter induces damage through oxidative stress and has a profound effect on mitochondrial homeostasis, interventions involving targeted mitochondrial antioxidants may help to minimize the damaging downstream effects of pollutant-induced oxidative stress originating from the mitochondria.
Collapse
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Amy Bowman
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Peter S. Hanson
- Mental HealthDementia and Neurodegeneration, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - Mark A. Birch‐Machin
- Dermatological Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
8
|
Senthilkumaran M, Saravanan C, Ashwin BCMA, Shanmugavelan P, Muthu Mareeswaran P, Prakash M. Inclusion induced water solubility and binding investigation of acenaphthene-1,2-dione with p-sulfonatocalix[4]arene. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhang Y, Shen Z, Sun J, Zhang L, Zhang B, Zhang T, Wang J, Xu H, Liu P, Zhang N, Cao J. Parent, alkylated, oxygenated and nitro polycyclic aromatic hydrocarbons from raw coal chunks and clean coal combustion: Emission factors, source profiles, and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137696. [PMID: 32182464 DOI: 10.1016/j.scitotenv.2020.137696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Residential coals are still inevitable using in developing areas in China. Clean coal briquettes, normally using alkaline substance such as lime or red mud (RM) as the additive, were helpful in pollution emission reduction even without changes of stoves. Studies of atmospheric polycyclic aromatic hydrocarbons (PAHs) emission characteristics from RM clear coal combustion were limited. In this study, emission factors (EFs), sources profiles, and health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were investigated for raw coal chunks and clean coal (with red mud) through combustion experiments. EFs of total PAHs were found to be 160.1 ± 100.9 mg·kg-1 and 19.4 ± 6.1 mg·kg-1 for bituminous and anthracite raw coal chunks (B-C and A-C), respectively. EFs values were highest for parent PAHs (p-PAHs), followed by oxygenated PAHs (o-PAHs), alkylated PAHs (a-PAHs), and nitro PAHs (n-PAHs). EFs of p-PAHs account for 80% and 52% of total PAHs emissions for B-C and A-C, respectively, while those for o-PAHs are 22.9% and 44.9%, demonstrating residential coal combustion as a significant primary source for p-PAHs and o-PAHs. Clean coals were developed through cold-press technology with red mud (RM) as additive, and clean coals with RM contents of 10% are referred to as B-10% (bituminous) and A-10% (anthracite). Compared to raw coals chunks, EFs were reduced from 128.1, 2.5, 29.3 mg·kg-1 and 161.8 μg·kg-1 to 83.5, 1.3, 16.4 mg·kg-1 and 102.2 μg·kg-1 by B-10%, and from 10.1, 0.6, 8.7 mg·kg-1 and 20.6 μg·kg-1 to 11.9, 0.2, 2.4 mg·kg-1 and 15.3 μg·kg-1 by A-10% for p-PAHs, o-PAHs, a-PAHs and n-PAHs, respectively. Diagnostic ratios of 5-Nitroacenaphthene / Acenaphthene (0.02-0.05 for coal, 0.0002 for biomass) can be used to separate residential coal and biomass burning in source analysis. When B-C was replaced by B-10%, both noncancer (0.58 to 0.33 for male, 1.65 to 0.95 for female in hazard quotient) and cancer risks (5.68 × 10-4 to 2.73 × 10-4 for male, 2.63 × 10-3 to 1.27 × 10-3 for female) can be reduced. o-PAHs should be paid more attention because of its high cancer risks caused by 6H-Benzo(C,D)Pyrene-6-One (1.74 × 10-5 for male, 8.07 × 10-5 for female), which are even more than the total risks caused by n-PAHs (3.59 × 10-7 for male, 1.66 × 10-6 for female). Results from this study highlighted the environment and health effects of PAHs originated from residential coal combustion, and proposed an effective way by using clean coal to alleviate the associated negative impacts.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China.
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhui Wang
- NICU, Xi'an Children's Hospital, Xi'an 710003, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - NingNing Zhang
- State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Junji Cao
- State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| |
Collapse
|
10
|
Sutherland GE, Franco ME, Willing SM, Lavado R. Applicability of a human cell co-culture model to evaluate antioxidant responses triggered by chemical mixtures in fish and oyster homogenates. Food Chem Toxicol 2019; 128:154-162. [PMID: 30965104 DOI: 10.1016/j.fct.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 01/17/2023]
Abstract
The accumulation of chemical compounds in fish tissue represents significant health concerns for seafood consumers, but little is known about the risks to human health associated with such substances. The identification of adverse biological responses upon exposure to contaminants has been facilitated by the development of in vitro systems resembling the human dietary pathway. The present study explores the applicability of an organotypic co-culture system, using intestinal (Caco-2) and hepatic (HepaRG) cell lines, to provide insight into the toxicity of chemical mixtures found in commercially available seafood. Chemical extractions were conducted utilizing fish and oyster standard reference material (SRM) from the U.S. National Institute of Standards and Technology (NIST). Cells were seeded in monoculture and co-culture systems and exposed to SRM extracts before measurements of cytotoxicity and antioxidant responses. Exposure to oyster extracts led to significant cell mortality in monocultures. HepaRG cells in monoculture expressed lower levels of glutathione peroxidase and superoxide dismutase than HepaRG cells in co-culture, upon exposure to both oyster and fish extracts. These observations illustrate the importance of organotypic co-culture models to explore biological responses that could be otherwise difficult to evaluate in monocultures, and the adverse effects associated with the consumption of contaminated seafood.
Collapse
Affiliation(s)
- Grace E Sutherland
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sarah M Willing
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
11
|
Zhang LC, Wang Y, Liu W, Zhang XM, Fan M, Zhao M. Protective effects of SOD2 overexpression in human umbilical cord mesenchymal stem cells on lung injury induced by acute paraquat poisoning in rats. Life Sci 2018; 214:11-21. [PMID: 30321544 DOI: 10.1016/j.lfs.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
AIMS To study the protective effects and mechanisms of human umbilical cord mesenchymal stem cells (hUCMSCs) and overexpression of antioxidant gene SOD2 on lung injury by establishing a rat model of paraquat (PQ)-induced lung injury. MAIN METHODS The hUCMSCs cell line overexpressed SOD2 was established. After intraperitoneal injection of PQ solution (24 mg/kg) 3 h later, the different groups of hUCMSCs cell lines were injected through the tail veins of rats. Bronchoalveolar lavage fluid (BALF) was obtained to determine the protein level of inflammatory cytokines. Lung tissues were collected to test the wet/dry weight ratios (W/D), oxidative stress index and lung injury scores. Western blotting was used to detect SOD1, SOD2, HO-1, Nrf2, NF-κBp65 subunit, and cleaved caspase-3. KEY FINDINGS After treatment with cells built on the basis of hUCMSCs, the protein levels of TNF-α, IL-8, and ICAM-1 in BALF decreased, and meanwhile in lung tissues, MDA content was reduced, GSH-Px activity was elevated, and lung W/D ratio decreased. Additionally, protein expression of NF-κB p65 subunit and activated caspase-3 in lung tissues was down-regulated, whereas expression of SOD1, SOD2, HO-1, and Nrf-2 were up-regulated. The results of HE staining showed that lung injury was significantly alleviated in the hUCMSC treated group. It is noticeable that hUCMSCs and SOD2-overexpressed hUCMSCs effectively reduced PQ-induced lung injury in rats, and moreover, hUCMSCs overexpressed SOD2 were more effective compared with hUCMSCs only. SIGNIFICANCE Evaluation of the efficacy and analysis of mechanism in the treatment of PQ induced ALI by appliance of SOD2-overexpressed hUCMSCs will provide the proof from bench to bedside.
Collapse
Affiliation(s)
- Li-Chun Zhang
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China.
| | - Yu Wang
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Wei Liu
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Xue-Min Zhang
- Eugenom Inc., Rm 310 No. 226 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Miao Fan
- Eugenom Inc., Rm 310 No. 226 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Min Zhao
- Emergency Department of Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| |
Collapse
|
12
|
Arif AT, Maschowski C, Garra P, Garcia-Käufer M, Petithory T, Trouvé G, Dieterlen A, Mersch-Sundermann V, Khanaqa P, Nazarenko I, Gminski R, Gieré R. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2017; 163:138-154. [PMID: 30519142 PMCID: PMC6275551 DOI: 10.1016/j.atmosenv.2017.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.
Collapse
Affiliation(s)
- Ali Talib Arif
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
- Sulaimani Polytechnic University (SPU) and Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
- Corresponding author. Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany., (A.T. Arif)
| | - Christoph Maschowski
- Institute of Earth and Environmental Sciences-Geochemistry, University of Freiburg, D-79104 Freiburg, Germany
| | - Patxi Garra
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
- Laboratoire Modélisation Intelligence des Procédés et des Systèmes (MIPS), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Manuel Garcia-Käufer
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tatiana Petithory
- Institut de Sciences des Materiaux de Mulhouse, CNRS UMR7361, Universite de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Gwenaëlle Trouvé
- Laboratoire Gestion des Risques et Environnement (LGRE), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Alain Dieterlen
- Laboratoire Modélisation Intelligence des Procédés et des Systèmes (MIPS), Université de Haute-Alsace, F-68093 Mulhouse Cedex, France
| | - Volker Mersch-Sundermann
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Polla Khanaqa
- Sulaimani Polytechnic University (SPU) and Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Qirga - Sulaimani, Iraq
| | - Irina Nazarenko
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Richard Gminski
- Institute of Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Reto Gieré
- Department of Earth and Environmental Science and Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| |
Collapse
|
13
|
Park CH, Shin SH, Lee EK, Kim DH, Kim MJ, Roh SS, Yokozawa T, Chung HY. Magnesium Lithospermate B from Salvia miltiorrhiza Bunge Ameliorates Aging-Induced Renal Inflammation and Senescence via NADPH Oxidase-Mediated Reactive Oxygen Generation. Phytother Res 2017; 31:721-728. [PMID: 28211114 DOI: 10.1002/ptr.5789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/09/2022]
Abstract
The present study was conducted to examine whether magnesium lithospermate B (MLB) extracted from Salviae miltiorrhizae radix was renoprotective in pathways related to age-related oxidative stress in aged rats. Magnesium lithospermate B was orally administered at a dose of 2- or 8-mg/kg body weight for 16 consecutive days, and the effects were compared with those of vehicle in old and young rats. Magnesium lithospermate B administration to old rats ameliorated renal oxidative stress through reduction of reactive oxygen species. The old rats exhibited a dysregulation of the expression of proteins related to oxidative stress and inflammation in the kidneys, and MLB administration significantly reduced the protein expression of major subunits of nicotinamide adenine dinucleotide phosphate oxidase (Nox4 and p22phox ), phospho-p38, nuclear factor-kappa B p65, cyclooxygenase-2, and inducible nitric oxide synthase. In addition, MLB-treated old rats showed lower levels of senescence-related proteins such as p16, ADP-ribosylation factor 6, p53, and p21 through effects on the mitogen-activated protein kinase pathway. Magnesium lithospermate B administration also significantly attenuated the age-related increase in serum urea nitrogen, reflecting renal dysfunction, up-regulated podocyte structural proteins, and reduced renal structural injury. Our results provide important evidence that MLB reduces the renal damage of oxidative stress in old rats. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, Korea.,College of Korean Medicine, Daegu Haany University, Daegu, 706-060, Korea
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, 39660, Korea.,College of Korean Medicine, Daegu Haany University, Daegu, 706-060, Korea
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Min-Jo Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| | - Seong-Soo Roh
- College of Korean Medicine, Daegu Haany University, Daegu, 706-060, Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama, 930-8555, Japan
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, 609-735, Korea
| |
Collapse
|
14
|
Chu H, Shang J, Jin M, Chen Y, Pan Y, Li Y, Tao X, Cheng Z, Meng Q, Li Q, Jia G, Zhu T, Hao W, Wei X. Comparison of lung damage in mice exposed to black carbon particles and 1,4-naphthoquinone coated black carbon particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:572-581. [PMID: 28034545 DOI: 10.1016/j.scitotenv.2016.11.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Black carbon (BC) is a key component of atmospheric particles and has a significant effect on human health. BC can provide reactive sites and surfaces thus absorb quinones which were primarily generated from fossil fuel combustion and/or atmospheric photochemical conversions of PAHs. Oxidation could change the characteristics of BC and increase its toxicity. The comparison of lung damage in mice exposed to BC and 1,4-NQ-coated BC (1,4NQ-BC) particles is investigated in this study. Mice which were intratracheally instilled with particles have a higher expression of IL-1β, IL-6 and IL-33 in bronchoalveolar lavage fluid (BALF). Also, the IL-6, IL-33 mRNA expression in the lung tissue of mice instilled with 1,4NQ-BC were higher than that of mice instilled with BC. The pathology results showed that the lung tissue of mice instilled with 1,4NQ-BC particles have much more inflammatory cells infiltration than that of mice treated with BC. It is believed that the MAPK and PI3K-AKT pathway might be involved in the 1,4NQ-BC particles caused lung damage. Results indicated that 1,4NQ-BC particles in the atmosphere may cause more damage to health.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Ming Jin
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yueyue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuan Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xi Tao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; POTEN Environment Group Co., Ltd., Beijing 100082, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
15
|
Chang CC, Hsu YH, Chou HC, Lee YCG, Juan SH. 3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation. J Cell Physiol 2016; 232:1020-1029. [PMID: 27442426 DOI: 10.1002/jcp.25497] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC. J. Cell. Physiol. 232: 1020-1029, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chih-Cheng Chang
- Departmentof Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ho Hsu
- Department of Nephrology, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Chii G Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hui Juan
- Departmentof Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Bian W, Zheng F, Zhu G, Xu X. Laser flash photolysis study on the quenching reaction of the excited triplet state of acenaphthenequinone by antioxidant vitamin C. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-013-1443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Romanias MN, Andrade-Eiroa A, Shahla R, Bedjanian Y, Zogka AG, Philippidis A, Dagaut P. Photodegradation of Pyrene on Al2O3 Surfaces: A Detailed Kinetic and Product Study. J Phys Chem A 2014; 118:7007-16. [DOI: 10.1021/jp504725z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manolis N. Romanias
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| | - Auréa Andrade-Eiroa
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| | - Roya Shahla
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| | - Antonia G. Zogka
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| | - Aggelos Philippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece
| | - Philippe Dagaut
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS-INSIS, 1C, Avenue de la Recherche Scientifique, 45071 Orléans Cedex
2, France
| |
Collapse
|
18
|
Westman O, Larsson M, Venizelos N, Hollert H, Engwall M. An oxygenated metabolite of benzo[a]pyrene increases hepatic β-oxidation of fatty acids in chick embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6243-6251. [PMID: 24385188 DOI: 10.1007/s11356-013-2471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens to humans and ecotoxicological effects have been shown in several studies. However, PAHs can also be oxidized into more water soluble-oxygenated metabolites (Oxy-PAHs). The first purpose of the present project was to (1) assess the effects of a mixture containing three parent PAHs: anthracene, benz[a]anthracene, and benzo[a]pyrene versus a mixture of their oxygenated metabolites, namely: anthracene-9,10-dione, benz[a]anthracene-7,12-dione, and 9,10-dihydrobenzo[a]pyrene-7-(8H)-one on the hepatic fatty acid β-oxidation in chicken embryos (Gallus gallus domesticus) exposed in ovo. The second and also main purpose of the project was to (2) assess the effects of the parent PAHs versus their oxy-PAHs analogues when injected individually, followed by (3) additional testing of the individual oxy-PAHs. The hepatic β-oxidation was measured using a tritium release assay with [9,10-(3)H]-palmitic acid (16:0) as substrate. The result from the first part (1) showed reduced hepatic β-oxidation after exposure in ovo to a mixture of three PAHs, however, increased after exposure to the mixture of three oxy-PAHs compared to control. The result from the second part (2) and also the follow-up experiment (3) showed that 9,10-dihydrobenzo[a]pyrene-7-(8H)-one was the causative oxy-PAH. The implication of this finding on the risk assessment of PAH metabolite exposure in avian wildlife remains to be determined. To the best of our knowledge, no similar studies have been reported.
Collapse
Affiliation(s)
- Ola Westman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, SE-70182, Sweden,
| | | | | | | | | |
Collapse
|
19
|
Shang Y, Zhang L, Jiang Y, Li Y, Lu P. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species. CHEMOSPHERE 2014; 100:42-49. [PMID: 24480427 DOI: 10.1016/j.chemosphere.2013.12.079] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
Ambient particulate matter (PM) is associated with adverse health effects. Quinones present in PM are hypothesized to contribute to these harmful effects through the generation of reactive oxygen species (ROS). However, whether the ROS induced by quinones is involved in mediating DNA damage as well as other biological responses in pulmonary cells is less well known. In this study, the toxic effects of five typical airborne quinones, including 1,2-naphthoquinone, 2-methylanthraquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, and acenaphthenequinone, on cytotoxicity, DNA damage, intracellular calcium homeostasis, and ROS generation, were studied in human lung epithelial A549 cells. An antioxidant N-acetylcysteine (NAC) was used to examine the involvement of ROS in adverse biological responses induced by quinones. The quinones caused a concentration-dependent viability decrease, cellular LDH release, DNA damage, and ROS production in A549 cells. 1,2-Naphthoquinone, but not the other four quinones, increased intracellular calcium (Ca(2+)) levels in a dose-dependent manner. These toxic effects were abolished by administration of NAC, suggesting that ROS played a key role in the observed toxic effects of quinones in A549 cells. These results emphasize the importance of quinones in PM on the adverse health effects of PMs, which has been underestimated in the past few years, and highlight the need, when evaluating the effects on health and exposure management, to always consider their qualitative chemical compositions in addition to the size and concentration of PMs.
Collapse
Affiliation(s)
- Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ling Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuting Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Li
- Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Ping Lu
- Center for Spatial Information Science and Sustainable Development Applications, College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Wong JYY, De Vivo I, Lin X, Christiani DC. Cumulative PM(2.5) exposure and telomere length in workers exposed to welding fumes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:441-55. [PMID: 24627998 PMCID: PMC4072226 DOI: 10.1080/15287394.2013.875497] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Telomeres are genomic structures that reflect both mitotic history and biochemical trauma to the genome. Metals inherent in fine particulate matter (PM(2.5)) were shown to be genotoxic via oxidative damage. However, few studies investigated the induction time of cumulative PM(2.5) exposure on telomere length in a longitudinal setting. Therefore, the purpose of this study was to assess the association between occupational PM(2.5) exposure in various time windows and telomere length. The study population consisted of 48 boilermakers and the follow-up period was 8 yr. The main exposures were cumulative occupational PM(2.5) in the month, year, and career prior to each blood draw, assessed via work history questionnaires and area air measures. Repeated telomere length measurements from leukocytes were assessed via real-time qualitative polymerase chain reaction (qPCR). Analysis was performed using linear mixed models controlling for confounders and white blood cell differentials. Cumulative PM(2.5) exposure was treated continuously and categorized into quartiles, in separate analyses. At any follow-up time, for each milligram per cubic meter per hour increase in cumulative PM(2.5) exposure in the prior month, there was a statistically significant decrease in relative telomere length of -0.04 units. When categorizing the exposure into quartiles, there was a significant negative association between telomere length and highest quartile of cumulative PM(2.5) exposure in the prior month (-0.16). These findings suggest that genomic trauma to leukocyte telomeres was more consistent with recent occupational PM(2.5) exposure, as opposed to cumulative exposure extending into the distant past.
Collapse
Affiliation(s)
- Jason Y. Y. Wong
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of
Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public
Health, Boston, Massachusetts, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard School of
Public Health, Boston, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
| |
Collapse
|
21
|
Loading of free radicals on the functional graphene combined with liquid chromatography–tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants. Anal Chim Acta 2013; 802:103-12. [DOI: 10.1016/j.aca.2013.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 11/22/2022]
|
22
|
Hatae N, Nakamura J, Okujima T, Ishikura M, Abe T, Hibino S, Choshi T, Okada C, Yamada H, Uno H, Toyota E. Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells. Bioorg Med Chem Lett 2013; 23:4637-40. [DOI: 10.1016/j.bmcl.2013.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
23
|
Shang Y, Fan L, Feng J, Lv S, Wu M, Li B, Zang YS. Genotoxic and inflammatory effects of organic extracts from traffic-related particulate matter in human lung epithelial A549 cells: The role of quinones. Toxicol In Vitro 2013; 27:922-31. [DOI: 10.1016/j.tiv.2013.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/05/2012] [Accepted: 01/04/2013] [Indexed: 12/22/2022]
|
24
|
Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012; 9:45. [PMID: 23176191 PMCID: PMC3544657 DOI: 10.1186/1743-8977-9-45] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
Affiliation(s)
| | | | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden
| | - Artur Braun
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Roger Westerholm
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Christoffer Bergvall
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Johan Boman
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans Jørgen Dahlman
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Sehlstedt
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Flemming Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Thomas Sandstrom
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Per E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Inge Herseth
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| |
Collapse
|
26
|
Shang Y, Chen C, Li Y, Zhao J, Zhu T. Hydroxyl radical generation mechanism during the redox cycling process of 1,4-naphthoquinone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2935-2942. [PMID: 22288565 DOI: 10.1021/es203032v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Airborne quinones contribute to adverse health effects of ambient particles probably because of their ability to generate hydroxyl radicals (·OH) via redox cycling, but the mechanisms remain unclear. We examined the chemical mechanisms through which 1,4-naphthoquinone (1,4-NQ) induced ·OH, and the redox interactions between 1,4-NQ and ascorbate acid (AscH(2)). First, ·OH formation by 1,4-NQ was observed in cellular and acellular systems, and was enhanced by AscH(2). AscH(2) also exacerbated the cytotoxicity of 1,4-NQ in Ana-1 macrophages, at least partially due to enhanced ·OH generation. The detailed mechanism was studied in an AscH(2)/H(2)O(2) physiological system. The existence of a cyclic 1,4-NQ process was shown by detecting the corresponding semiquinone radical (NSQ·-) and hydroquinone (NQH(2)). 1,4-NQ was reduced primarily to NSQ·- by O2·- (which was from AscH(2) reacting with H(2)O(2)), not by AscH(2) as normally thought. At lower doses, 1,4-NQ consumed O2·- to suppress ·OH; however, at higher doses, 1,4-NQ presented a positive association with ·OH. The reaction of NSQ·- with H(2)O(2) to release ·OH was another important channel for OH radical formation except for Haber-Weiss reaction. As a reaction precursor for O2·-, the enhanced ·OH response to 1,4-NQ by AscH(2) was indirect. Reducing substrates were necessary to sustain the redox cycling of 1,4-NQ, leading to more ·OH and a deleterious end point.
Collapse
Affiliation(s)
- Yu Shang
- State Key Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
27
|
Das A, Choudhury D, Chakrabarty S, Bhattacharya A, Chakrabarti G. Acenaphthenequinone induces cell cycle arrest and mitochondrial apoptosis via disruption of cellular microtubules. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx00013j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Fritsch-Decker S, Both T, Mülhopt S, Paur HR, Weiss C, Diabaté S. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles. Part Fibre Toxicol 2011; 8:23. [PMID: 21810225 PMCID: PMC3162496 DOI: 10.1186/1743-8977-8-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 08/02/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute exposure to elevated levels of environmental particulate matter (PM) is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS), oxidative stress and inflammatory responses is of particular interest.In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA) cascade. Incinerator fly ash particles (MAF02) were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. RESULTS The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2), and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK) JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC) prevented the MAF02-mediated enhancement of free AA, the subsequent conversion to PGE2/TXB2 via the induction of COX-2 and the ERK1/2 and JNK1/2 phosphorylation. Finally we showed that the particle-induced formation of ROS, liberation of AA and PGE2/TXB2 together with the phosphorylation of ERK1/2 and JNK1/2 proteins was decreased after pre-treatment of macrophages with the metal chelator deferoxamine mesylate (DFO). CONCLUSIONS These results indicate that one of the primary mechanism initiating inflammatory processes by incinerator fly ash particles seems to be the metal-mediated generation of ROS, which triggers via the MAPK cascade the activation of AA signalling pathway.
Collapse
Affiliation(s)
- Susanne Fritsch-Decker
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Xu XS, Shi L, Liu Y, Ji XH, Cui ZF. TR-ESR Investigation on Reaction of Vitamin C with Excited Triplet of 9,10-phenanthrenequinone in Reversed Micelle Solutions. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/02/150-154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Kameda T. Atmospheric Chemistry of Polycyclic Aromatic Hydrocarbons and Related Compounds. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.504] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Kameda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
31
|
Wei Y, Han IK, Hu M, Shao M, Zhang JJ, Tang X. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. CHEMOSPHERE 2010; 81:1280-1285. [PMID: 20869742 DOI: 10.1016/j.chemosphere.2010.08.055] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
Recent studies suggest that DNA oxidative damage be related to the chemical constituents of ambient particles. The purpose of this study was to examine whether particulate polycyclic aromatic hydrocarbons (PAHs) and quinone-structure chemicals increase body burden of oxidative stress in human exposed to heavy traffic volume. We recruited two nonsmoking security guards who worked at a university campus gate near a heavily trafficked road. Each subject wore a personal air sampler for 24h per day to estimate exposures to 24 PAHs and anthraquinone (AnQ) in PM(2.5). Daily pre- and post-work shift spot urines were collected for 29d from each subject. Urine samples were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG). Additionally, using 19 organic tracers other than 24 PAHs and AnQ, a receptor source apportionment model of chemical mass balance was applied to determine the contributions of sources on the PM: gasoline vehicle, diesel vehicle, coal burning, vegetable debris, cooking, natural gas and biomass burning. The relationship among urinary 8-OHdG, individual PAH, and AnQ was demonstrated as follows: the average urinary concentration of 8-OHdG was increased more than three times after 8-h work-shift than those before the work shift. All the 24 PAH and AnQ levels were positively and significantly associated with the post-work urinary 8-OHdG. The results from source apportionment suggest vehicular emission to be the dominant source of personal exposure to PM(2.5). Our finding indicates that personal air exposures to 24 individual PAHs and AnQ originating from traffic emissions are important in increasing oxidative burdens in human body.
Collapse
Affiliation(s)
- Yongjie Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
32
|
Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci 2010; 87:431-8. [DOI: 10.1016/j.lfs.2010.08.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/14/2010] [Accepted: 08/11/2010] [Indexed: 11/23/2022]
|
33
|
Kim MK, Chung SW, Kim DH, Kim JM, Lee EK, Kim JY, Ha YM, Kim YH, No JK, Chung HS, Park KY, Rhee SH, Choi JS, Yu BP, Yokozawa T, Kim YJ, Chung HY. Modulation of age-related NF-κB activation by dietary zingerone via MAPK pathway. Exp Gerontol 2010; 45:419-26. [DOI: 10.1016/j.exger.2010.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 02/11/2010] [Accepted: 03/02/2010] [Indexed: 12/11/2022]
|
34
|
Quenching dynamics study on photoinduced excited triplet duroquinone by TEMPO in 1,2-propandiol. RESEARCH ON CHEMICAL INTERMEDIATES 2010. [DOI: 10.1007/s11164-010-0138-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Fahmy B, Ding L, You D, Lomnicki S, Dellinger B, Cormier SA. In vitro and in vivo assessment of pulmonary risk associated with exposure to combustion generated fine particles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:173-82. [PMID: 20369027 PMCID: PMC2848491 DOI: 10.1016/j.etap.2009.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Strong correlations exist between exposure to PM(2.5) and adverse pulmonary effects. PM(2.5) consists of fine (=2.5 mum) and ultrafine (=0.1 mum) particles with ultrafine particles accounting for >70% of the total particles. Environmentally persistent free radicals (EPFRs) have recently been identified in airborne PM(2.5). To determine the adverse pulmonary effects of EPFRs associated with exposure to elevated levels of PM(2.5), we engineered 2.5 mum surrogate EPFR-particle systems. We demonstrated that EPFRs generated greater oxidative stress in vitro, which was partly responsible for the enhanced cytotoxicity following exposure. In vivo studies using rats exposed to EPFRs containing particles demonstrated minimal adverse pulmonary effects. Additional studies revealed that fine particles failed to reach the alveolar region. Overall, our study implies qualitative differences between the health effects of PM size fractions.
Collapse
Affiliation(s)
- Baher Fahmy
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Liren Ding
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Dahui You
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Slawo Lomnicki
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Stephania A. Cormier
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
36
|
Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res 2009; 28:323-46. [PMID: 18702007 DOI: 10.1080/10799890802305217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As with all body organs, the immune system is subjected to attack by a variety of toxins. Serious consequences can result because the immune organs serve as a defense against infective agents. The toxins, both organic and inorganic, fall into a large variety of classes, such as metals, therapeutic drugs, industrial chemicals, pollutants, pesticides, fuels, herbicides and abused drugs. Although the mode of action is multifaceted, our focus is on electron transfer (ET), reactive oxygen species (ROS), antioxidants (AOs), cell signaling, and receptors. It is significant that the toxins or their metabolites incorporate ET functionalities capable of redox cycling with resultant generation of ROS and accompanying oxidative stress.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
37
|
Ge Y, Preston RJ, Owen RD. Toxicoproteomics and its application to human health risk assessment. Proteomics Clin Appl 2007; 1:1613-24. [DOI: 10.1002/prca.200700490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Chung SW, Toriba A, Chung HY, Yu BP, Kameda T, Tang N, Kizu R, Hayakawa K. Activation of 5-lipoxygenase and NF-kappa B in the action of acenaphthenequinone by modulation of oxidative stress. Toxicol Sci 2007; 101:152-8. [PMID: 17925309 DOI: 10.1093/toxsci/kfm252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quinoid polycyclic aromatic hydrocarbons are potent redox-active compounds that undergo enzymatic and nonenzymatic redox cycling with their semiquinone radical. We previously reported that acenaphthenequinone (AcQ) can damage human lung epithelial A549 cells through the formation of reactive species (RS). However, the biochemical mechanisms by which RS-generating enzymes cause oxidative burst during AcQ exposure remain elusive. Here we examined the biochemical mechanism of AcQ-induced RS generation by using selective metabolic inhibitors in A549 cells. We found that AA861, a 5-lipoxygenase (5-LO)-specific inhibitor significantly decreases RS generation. This inhibition of RS seems to be 5-LO specific because other inhibitors did not suppress AcQ-induced RS generation by nicotinamide adenine nucleotide phosphate (reduced) oxidase and/or xanthine oxidase. In addition, the inhibition of 5-LO by AA861 markedly reduced AcQ-induced nuclear factor kappa B (NF-kappa B) activation. We further found the activation of 5-LO pathway by exposing cells to AcQ mediates the secretion of inflammatory leukotriene B4, which can be significantly suppressed by a potent RS scavenger, N-acetylcysteine. Thus, based on our findings, we propose that AcQ-induced damage is likely due to increased RS generation and NF-kappa B activity through 5-LO activation.
Collapse
Affiliation(s)
- Sang Woon Chung
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|