1
|
Application of physiologically-based pharmacokinetic modeled toluene blood concentration in the assessment of short term exposure limits. Regul Toxicol Pharmacol 2023; 140:105380. [PMID: 36934997 DOI: 10.1016/j.yrtph.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Toluene is a volatile hydrocarbon with solvent applications in several industries. Acute neurological effects in workers exposed to toluene have been reported in various publications. To inform the basis for a toluene Short Term Exposure Limit (STEL), studies of toluene-exposed workers were modeled using customized exposure scenarios within an existing physiologically-based pharmacokinetic (PBPK) model to simulate blood concentrations during individual studies. Maximum simulated blood concentration ranged from 0.3 to 1.7 (mean = 0.74 mg/L, median = 0.73, upper 95th percentile = 1.07) at the studies identified No Observed Adverse Effect Concentration (NOAEC). Maximum simulated blood concentration ranged from 0.7 to 4.1 mg/L (mean = 1.81, median = 1.63, lower 95th percentile = 0.92) at the studies identified Lowest Observed Adverse Effect Concentration (LOAEC). The maximum blood concentration for a 100 ppm STEL-like simulation was 0.4 mg/L, at the lower end of the NOAEC range and below the 95th percentile of the LOAEC. Therefore, it appears that a STEL <100 ppm would be unnecessary to protect workers due to peak occupational exposures to toluene.
Collapse
|
2
|
Blue–yellow dyschromatopsia in toluene-exposed workers. Int Arch Occup Environ Health 2019; 92:699-707. [DOI: 10.1007/s00420-019-01405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
3
|
Toluene inhalation exposure for 13 weeks causes persistent changes in electroretinograms of Long-Evans rats. Neurotoxicology 2016; 53:257-270. [PMID: 26899397 DOI: 10.1016/j.neuro.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To address this question experimentally, we examined visual function by recording visual evoked potentials (VEP) and/or electroretinograms (ERG) from four sets of rats exposed repeatedly to toluene. In addition, eyes of the rats were examined with an ophthalmoscope and some of the retinal tissues were evaluated for rod and M-cone photoreceptor immunohistochemistry. The first study examined rats following exposure to 0, 10, 100 or 1000ppm toluene by inhalation (6hr/d, 5d/wk) for 13 weeks. One week after the termination of exposure, the rats were implanted with chronically indwelling electrodes and the following week pattern-elicited VEPs were recorded. VEP amplitudes were not significantly changed by toluene exposure. Four to five weeks after completion of exposure, rats were dark-adapted overnight, anesthetized, and several sets of electroretinograms (ERG) were recorded. In dark-adapted ERGs recorded over a 5-log (cd-s/m(2)) range of flash luminance, b-wave amplitudes were significantly reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A second set of rats, exposed concurrently with the first set, was tested approximately one year after the termination of 13 weeks of exposure to toluene. Again, dark-adapted ERG b-wave amplitudes were reduced at high stimulus luminance values in rats previously exposed to 1000ppm toluene. A third set of rats was exposed to the same concentrations of toluene for only 4 weeks, and a fourth set of rats exposed to 0 or 1000ppm toluene for 4 weeks were tested approximately 1year after the completion of exposure. No statistically significant reductions of ERG b-wave amplitude were observed in either set of rats exposed for 4 weeks. No significant changes were observed in ERG a-wave amplitude or latency, b-wave latency, UV- or green-flicker ERGs, or in photopic flash ERGs. There were no changes in the density of rod or M-cone photoreceptors. The ERG b-wave reflects the firing patterns of on-bipolar cells. The reductions of b-wave amplitude after 13 weeks of exposure and persisting for 1year suggest that alterations may have occurred in the inner nuclear layer of the retina, where the bipolar cells reside, or the outer or inner plexiform layers where the bipolar cells make synaptic connections. These data provide experimental evidence that repeated exposure to toluene may lead to subtle persistent changes in visual function. The fact that toluene affected ERGs, but not VEPs, suggests that elements in the rat retina may be more sensitive to organic solvent exposure than the rat visual cortex.
Collapse
|
4
|
Kodavanti PRS, Royland JE, Moore-Smith DA, Besas J, Richards JE, Beasley TE, Evansky P, Bushnell PJ. Acute and subchronic toxicity of inhaled toluene in male Long-Evans rats: Oxidative stress markers in brain. Neurotoxicology 2015; 51:10-9. [PMID: 26343380 DOI: 10.1016/j.neuro.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute and one subchronic, were conducted to seek effects of the VOC, toluene, in rats and to compare the effects between acute and subchronic exposures. Adult male Long-Evans rats were exposed to toluene vapor (n=6 per group) at a concentration of 0 or 1019 ± 14 ppm for 6h in the acute study and at 0 ± 0, 10 ± 1.4, 97 ± 7, or 995 ± 43 ppm for 6h/d, 5d/week for 13 weeks in the subchronic study. For the acute study, brains were dissected on ice within 30 min of the end of exposure, while for the subchronic study, brains were dissected 18 h after the last exposure. Frontal cortex, hippocampus, cerebellum, and striatum were assayed for a variety of oxidative stress (OS) parameters including total aconitase (TA), protein carbonyls, glutathione peroxidase (GPX), glutathione reductase (GRD), glutathione transferase (GST), γ-glutamylcysteine synthetase (GCS), superoxide dismutase (SOD), total antioxidants (TAS), NADPH quinone oxidoreductase-1 (NQO1), and NADH ubiquinone reductase (UBIQ-RD) activities using commercially available kits. Following acute exposure, UBIQ-RD, GCS and GRD were increased significantly only in the cerebellum, while TAS was increased in frontal cortex. On the other hand, subchronic exposure affected several OS markers including increases in NQO1 and UBIQ-RD. The effect of subchronic toluene exposure on SOD and TAS was greater in the striatum than in the other brain regions. TA activity (involved in maintaining iron homeostasis and an indicator of DNA damage) was inhibited in striatum and cerebellum, increased in hippocampus, and unchanged in frontal cortex. Protein carbonyls increased significantly in both the frontal cortex and cerebellum. In general, the results showed that acute exposure to toluene affected OS parameters to a lesser extent than did subchronic exposure. These results suggest that toluene exposure induces OS in the brain and this may be a component of an adverse outcome pathway for some of the neurotoxic effects reported following toluene exposure.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Joyce E Royland
- Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Debra A Moore-Smith
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jonathan Besas
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy E Richards
- Cardiopulmonary and Immunotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Tracey E Beasley
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul Evansky
- Inhalation Toxicology Facility, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Philip J Bushnell
- Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Kobald SO, Wascher E, Blaszkewicz M, Golka K, van Thriel C. Neurobehavioral and neurophysiological effects after acute exposure to a single peak of 200 ppm toluene in healthy volunteers. Neurotoxicology 2015; 48:50-9. [DOI: 10.1016/j.neuro.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
6
|
Fox DA. Retinal and visual system: occupational and environmental toxicology. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:325-40. [PMID: 26563796 DOI: 10.1016/b978-0-444-62627-1.00017-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders.
Collapse
Affiliation(s)
- Donald A Fox
- Departments of Vision Sciences, Biology and Biochemistry, Pharmacology, and Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
7
|
Georgiou AL, Guo L, Francesca Cordeiro M, Salt TE. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma. Curr Eye Res 2013; 39:472-86. [PMID: 24215221 DOI: 10.3109/02713683.2013.848902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM The aim of the study was to investigate the long-term functional changes that may occur in the retina and visual cortex in a rat ocular hypertension (OHT) model of glaucoma, used in our lab for treatment studies, using electroretinogram (ERG) and visual-evoked potential (VEP) cortical recordings in order to test the hypothesis that experimental glaucoma has differential retinal and central effects. MATERIALS AND METHODS Experimental glaucoma was induced unilaterally in Dark Agouti rats using hypertonic saline injection into the episcleral veins. After 3, 8, 16 and 26 weeks, ERGs and VEPs were recorded under scotopic conditions using brief full-field white flashes (10 μcd s m(-2) to 10.4 cd s m(-2)) and under photopic conditions using a rod-adapting background and white light flashes (0.13-10.4 cd s m(-2)). RESULTS At 16 and 26 weeks after OHT induction, there was a significant reduction in the amplitudes of the a- (50% and 30% of unoperated eye values, respectively) and b-waves (55% and 40%, respectively) of the scotopic ERG and the b-waves of the photopic ERG (55% and 45%, respectively) in the glaucomatous eyes. However, no significant changes in the VEPs simultaneously recorded over the visual cortex were seen at any of the time points. CONCLUSIONS The reductions in ERG amplitudes suggest that this model of glaucoma not only causes retinal ganglion cell (RGC) degeneration but also degeneration of the outer retinal cells, and this was confirmed by histology showing a reduction in the outer retinal layers in the glaucomatous eyes. Cortical VEPs did not show detrimental effects suggesting that the retinal damage in this model was not extensive enough to be detected with the VEP methods used or that there could be central compensation in this model of glaucoma.
Collapse
Affiliation(s)
- Anne L Georgiou
- Department of Visual Neuroscience, UCL Institute of Ophthalmology , London , UK
| | | | | | | |
Collapse
|
8
|
Study of the potential oxidative stress induced by six solvents in the rat brain. Neurotoxicology 2012; 35:71-83. [PMID: 23270871 DOI: 10.1016/j.neuro.2012.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 02/03/2023]
Abstract
The mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane). Three of these solvents have been shown to generate ROS in studies carried out in vitro on granular cell cultures from rat cerebellum. We assessed OH production by quantifying the rate of formation of 3,4-dihydroxybenzoic acid using a trapping agent, 4-hydroxybenzoic acid, infused via the microdialysis probe, into the prefrontal cortex of rats exposed intraperitoneally to the solvents. Extracellular MDA was quantified in microdialysates collected from the prefrontal cortex of rats exposed, 6h/day for ten days, to 1000ppm of the solvents (except for n-butylbenzene, generated at 830ppm) in inhalation chambers. Tissue levels of free and total MDA were measured in different brain structures for rats acutely (intraperitoneal route) and sub-acutely (inhalation) exposed to solvents. None of the six solvents studied increased the production of hydroxyl radicals in the prefrontal cortex after acute administration. Nor did they increase extracellular or tissue levels of MDA after 10 days' inhalation exposure. On the other hand, a decrease in the concentrations of free MDA in brain structures was observed after acute administration of n-hexane, 1,2,4-trimethylcyclohexane, toluene and n-butylbenzene. Therefore, data of this study carried out in vivo did not confirm observations made in vitro on cell cultures.
Collapse
|
9
|
Benignus VA, Bushnell PJ, Boyes WK. Estimated rate of fatal automobile accidents attributable to acute solvent exposure at low inhaled concentrations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:1935-1948. [PMID: 21545625 DOI: 10.1111/j.1539-6924.2011.01622.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mechanisms. These observations, along with the extensive data on the relationship between ethanol consumption and fatal automobile accidents, suggested a way to estimate the probability of fatal automobile accidents from solvent inhalation. The problem can be approached using the logic of the algebraic transitive postulate of equality: if A=B and B=C, then A=C. We first calculated a function describing the internal doses of solvent vapors that cause the same magnitude of behavioral impairment as ingestion of ethanol (A=B). Next, we fit a function to data from the literature describing the probability of fatal car crashes for a given internal dose of ethanol (B=C). Finally, we used these two functions to generate a third function to estimate the probability of a fatal car crash for any internal dose of organic solvent vapor (A=C). This latter function showed quantitatively (1) that the likelihood of a fatal car crash is increased by acute exposure to organic solvent vapors at concentrations less than 1.0 ppm, and (2) that this likelihood is similar in magnitude to the probability of developing leukemia from exposure to benzene. This approach could also be applied to other potentially adverse consequences of acute exposure to solvents (e.g., nonfatal car crashes, property damage, and workplace accidents), if appropriate data were available.
Collapse
Affiliation(s)
- Vernon A Benignus
- Integrated Systems Toxicology Division, Systems Biology Branch, Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA. vbenignus.@earthlink.net
| | | | | |
Collapse
|
10
|
van Thriel C, Westerink RHS, Beste C, Bale AS, Lein PJ, Leist M. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 2011; 33:911-24. [PMID: 22008243 DOI: 10.1016/j.neuro.2011.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can result in neurobehavioural alterations, and these have been used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-d-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment.
Collapse
Affiliation(s)
- Christoph van Thriel
- Neurobehavioural Toxicology and Chemosensation, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Hester SD, Johnstone AF, Boyes WK, Bushnell PJ, Shafer TJ. Acute toluene exposure alters expression of genes in the central nervous system associated with synaptic structure and function. Neurotoxicol Teratol 2011; 33:521-9. [DOI: 10.1016/j.ntt.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
12
|
A review of potential neurotoxic mechanisms among three chlorinated organic solvents. Toxicol Appl Pharmacol 2011; 255:113-26. [DOI: 10.1016/j.taap.2011.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 12/17/2022]
|
13
|
Oshiro WM, Kenyon EM, Gordon CJ, Bishop B, Krantz QT, Ford J, Bushnell PJ. Extrapolating the Acute Behavioral Effects of Toluene from 1- to 24-h Exposures in Rats: Roles of Dose Metric and Metabolic and Behavioral Tolerance. Toxicol Sci 2011; 123:180-92. [DOI: 10.1093/toxsci/kfr162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Beasley TE, Evansky PA, Gilbert ME, Bushnell PJ. Behavioral effects of subchronic inhalation of toluene in adult rats. Neurotoxicol Teratol 2010; 32:611-9. [DOI: 10.1016/j.ntt.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/07/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
15
|
Acute inhalation of 2,2,4-trimethylpentane alters visual evoked potentials and signal detection behavior in rats. Neurotoxicol Teratol 2010; 32:525-35. [DOI: 10.1016/j.ntt.2010.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/16/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
|
16
|
Behavioral toxicology in the 21st century: challenges and opportunities for behavioral scientists. Summary of a symposium presented at the annual meeting of the neurobehavioral teratology society, June, 2009. Neurotoxicol Teratol 2010; 32:313-28. [PMID: 20171276 DOI: 10.1016/j.ntt.2010.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/27/2010] [Accepted: 02/06/2010] [Indexed: 12/26/2022]
Abstract
The National Research Council (NRC) of the National Academies of Science recently published a report of its vision of toxicity testing in the 21st century. The report proposes that the current toxicity testing paradigm that depends upon whole-animal tests be replaced with a strategy based upon in vitro tests, in silico models and evaluations of toxicity at the human population level. These goals are intended to set in motion changes that will transform risk assessment into a process in which adverse effects on public health are predicted by quantitative structure-activity relationship (QSAR) models and data from suites of high-throughput in vitro tests. The potential roles for whole-animal testing in this futuristic vision are both various and undefined. A symposium was convened at the annual meeting of the Neurobehavioral Teratology Society in Rio Grande, Puerto Rico in June, 2009 to discuss the potential challenges and opportunities for behavioral scientists in developing and/or altering this strategy toward the ultimate goal of protecting public health from hazardous chemicals. R. Kavlock described the NRC vision, introduced the concept of the 'toxicity pathway' (a central guiding principle of the NRC vision), and described the current status of an initial implementation this approach with the EPA's ToxCast(R) program. K. Crofton described a pathway based upon disruption of thyroid hormone metabolism during development, including agents, targets, and outcomes linked by this mode of action. P. Bushnell proposed a pathway linking the neural targets and cellular to behavioral effects of acute exposure to organic solvents, whose predictive power is limited by our incomplete understanding of the complex CNS circuitry that mediates the behavioral responses to solvents. B. Weiss cautioned the audience regarding a pathway approach to toxicity testing, using the example of the developmental toxicity of phthalates, whose effects on mammalian sexual differentiation would be difficult to identify based on screening tests in vitro. Finally, D. Rice raised concerns regarding the use of data derived from toxicity screening tests to human health risk assessments. Discussion centered around opportunities and challenges for behavioral toxicologists regarding this impending paradigm shift. Opportunities include: identifying and characterizing toxicity pathways; informing the conditions and limits of extrapolation; addressing issues of susceptibility and variability; providing reality-checks on selected positives and negatives from screens; and performing targeted testing and dose-response assessments of chemicals flagged during screening. Challenges include: predicting behavior using models of complex neurobiological pathways; standardizing study designs and dependent variables to facilitate creation of databases; and managing the cost and efficiency of behavioral assessments. Thus, while progress is being made in approaching the vision of 21st century toxicology, we remain a long way from replacing whole-animal tests; indeed, some animal testing will be essential for the foreseeable future at least. Initial advances will likely provide better prioritization tools so that animal resources are used more efficiently and effectively.
Collapse
|
17
|
El-Masri HA, Dowd S, Pegram RA, Harrison R, Yavanhxay SJ, Simmons JE, Evans M. Development of an inhalation physiologically based pharmacokinetic (PBPK) model for 2,2, 4-trimethylpentane (TMP) in male Long-Evans rats using gas uptake experiments. Inhal Toxicol 2009; 21:1176-85. [DOI: 10.3109/08958370903005751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Lin HM, Liu CY, Jow GM, Tang CY. Toluene disrupts synaptogenesis in cultured hippocampal neurons. Toxicol Lett 2009; 184:90-6. [DOI: 10.1016/j.toxlet.2008.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/22/2008] [Accepted: 10/26/2008] [Indexed: 10/21/2022]
|
19
|
Boyes WK, Bercegeay M, Oshiro WM, Krantz QT, Kenyon EM, Bushnell PJ, Benignus VA. Acute Perchloroethylene Exposure Alters Rat Visual-Evoked Potentials in Relation to Brain Concentrations. Toxicol Sci 2008; 108:159-72. [DOI: 10.1093/toxsci/kfn265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|