1
|
Hori T, Yokobori K, Moore R, Negishi M, Sueyoshi T. CAR requires Gadd45β to promote phenobarbital-induced mouse liver tumors in early stage. Front Oncol 2023; 13:1217847. [PMID: 37746289 PMCID: PMC10516603 DOI: 10.3389/fonc.2023.1217847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Phenobarbital (PB) is an archetypal substance used as a mouse hepatocellular carcinoma (HCC) promotor in established experimental protocols. Our previous results showed CAR is the essential factor for PB induced HCC promotion. Subsequent studies suggested Gadd45β, which is induced by PB through CAR activation, is collaborating with CAR to repress TNF-α induced cell death. Here, we used Gadd45β null mice (Gadd45β KO) treated with N-diethylnitrosamine (DEN) at 5 weeks of age and kept the mice with PB supplemented drinking water from 7 to 57 weeks old. Compared with wild type mice, Gadd45β KO mice developed no HCC in the PB treated group. Increases in liver weight were more prominent in wild type mice than KO mice. Microarray analysis of mRNA derived from mouse livers found multiple genes specifically up or down regulated in wild type mice but not null mice in DEN + PB groups. Further qPCR analysis confirmed two genes, Tgfbr2 and irisin/Fndc5, were up-regulated in PB treated wild type mice but no significant increase was observed in Gadd45β KO mice. We focused on these two genes because previous reports showed that hepatic Irisin/Fndc5 expression was significantly higher in HCC patients and that irisin binds to TGF-β receptor complex that includes TGFBR2 subunit. Our results revealed irisin peptide in cell culture media increased the growth rate of mouse hepatocyte-derived AML12 cells. Microarray analysis revealed that irisin-regulated genes in AML12 cells showed a significant association with the genes in the TGF-β pathway. Expression of irisin/Fndc5 and Tgfbr2 induced growth of human HCC cell line HepG2. Thus, Gadd45β plays an indispensable role in mouse HCC development regulating the irisin/Fndc5 and Tgfbr2 genes.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kosuke Yokobori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,
Research Triangle Park, NC, United States
| |
Collapse
|
2
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Vitobello A, Perner J, Beil J, Zhu J, Del Río-Espínola A, Morawiec L, Westphal M, Dubost V, Altorfer M, Naumann U, Mueller A, Kapur K, Borowsky M, Henderson C, Wolf CR, Schwarz M, Moggs J, Terranova R. Drug-induced chromatin accessibility changes associate with sensitivity to liver tumor promotion. Life Sci Alliance 2019; 2:e201900461. [PMID: 31615920 PMCID: PMC6795216 DOI: 10.26508/lsa.201900461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
Liver cancer susceptibility varies amongst humans and between experimental animal models because of multiple genetic and epigenetic factors. The molecular characterization of such susceptibilities has the potential to enhance cancer risk assessment of xenobiotic exposures and disease prevention strategies. Here, using DNase I hypersensitivity mapping coupled with transcriptomic profiling, we investigate perturbations in cis-acting gene regulatory elements associated with the early stages of phenobarbital (PB)-mediated liver tumor promotion in susceptible versus resistant mouse strains (B6C3F1 versus C57BL/6J). Integrated computational analyses of strain-selective changes in liver chromatin accessibility underlying PB response reveal differential epigenetic regulation of molecular pathways associated with PB-mediated tumor promotion, including Wnt/β-catenin signaling. Complementary transcription factor motif analyses reveal mouse strain-selective gene regulatory networks and a novel role for Stat, Smad, and Fox transcription factors in the early stages of PB-mediated tumor promotion. Mapping perturbations in cis-acting gene regulatory elements provides novel insights into the molecular basis for susceptibility to xenobiotic-induced rodent liver tumor promotion and has the potential to enhance mechanism-based cancer risk assessments of xenobiotic exposures.
Collapse
Affiliation(s)
- Antonio Vitobello
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Inserm, Unité Mixte de Recherche (UMR) 1231, Université de Bourgogne-Franche Comté, Dijon, France
| | - Juliane Perner
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Johanna Beil
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | | | - Laurent Morawiec
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Valérie Dubost
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Marc Altorfer
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Ulrike Naumann
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Arne Mueller
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Karen Kapur
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Colin Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Jonathan Moggs
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
- Innovative Medicines Initiative MARCAR Consortium (http://www.imi-marcar.eu/index.php)
| | - Rémi Terranova
- Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| |
Collapse
|
4
|
Rampersaud A, Lodato NJ, Shin A, Waxman DJ. Widespread epigenetic changes to the enhancer landscape of mouse liver induced by a specific xenobiotic agonist ligand of the nuclear receptor CAR. Toxicol Sci 2019; 171:315-338. [PMID: 31236583 PMCID: PMC6760311 DOI: 10.1093/toxsci/kfz148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
CAR (Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolism and dysregulates genes linked to hepatocellular carcinogenesis, but its impact on the liver epigenome is poorly understood. TCPOBOP, a halogenated xenochemical and highly specific CAR agonist ligand, induces localized chromatin opening or closing at several thousand mouse liver genomic regions, discovered as differential DNase-hypersensitive sites (ΔDHS). Active enhancer and promoter histone marks induced by TCPOBOP were enriched at opening DHS and TCPOBOP-inducible genes. Enrichment of CAR binding and CAR motifs was seen at opening DHS and their inducible drug/lipid metabolism gene targets, and at many constitutively open DHS located nearby. TCPOBOP-responsive cell cycle and DNA replication genes co-dependent on MET/EGFR signaling for induction were also enriched for CAR binding. A subset of opening DHS and many closing DHS mapping to TCPOBOP-responsive target genes did not bind CAR, indicating an indirect mechanism for their changes in chromatin accessibility. TCPOBOP-responsive DHS were also enriched for induced binding of RXRA, CEBPA and CEBPB, and for motifs for liver-enriched factors that may contribute to liver-specific transcriptional responses to TCPOBOP exposure. These studies elucidate the enhancer landscape of TCPOBOP-exposed liver and the widespread epigenetic changes that are induced by both direct and indirect mechanisms linked to CAR activation. The global maps of thousands of environmental chemical-induced epigenetic changes described here constitute a rich resource for further research on xenochemical effects on liver chromatin states and the epigenome.
Collapse
Affiliation(s)
- Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - Nicholas J Lodato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - Aram Shin
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA USA
| |
Collapse
|
5
|
Guo J, Ito S, Nguyen HT, Yamamoto K, Iwata H. Effects on the hepatic transcriptome of chicken embryos in ovo exposed to phenobarbital. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:94-103. [PMID: 29793206 DOI: 10.1016/j.ecoenv.2018.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at evaluating the toxic effects of in ovo exposure to phenobarbital (PB) and unveiling the mode of action by transcriptome analysis in the embryonic liver of a model avian species, chicken (Gallus gallus). Embryos were initially treated with saline or 1 μg PB /g egg at Hamburger Hamilton Stage (HHS) 1 (1st day), followed by 20 days of incubation to HHS 46. At 21st day, chicks that pipped successfully were euthanized and dissected for assessing the PB caused effects on phenotypes and the liver transcriptome in both genders. In the PB treatment group, a 7% attenuation in tarsus length was found in females. While no adverse phenotypic effect on the liver somatic index (LSI) was observed, PB caused significant changes in the expressions of 52 genes in males and 516 genes in females (False Discovery Rate < 0.2, p value < 0.05, and absolute fold change > 2). PB exposure modulated the genes primarily enriched in the biological pathways of the cancer, cardiac development, immune response, lipid metabolism, and skeletal development in both genders, and altered expressions of genes related to the cellular process and neural development in females. However, mRNA expressions of chicken xenobiotic receptor (CXR)-mediated CYP genes were not induced in the PB treatment groups, regardless of males and females. On the contrary, PB exposure repressed the mRNA expressions of CYP2AC2 in males and CYP2R1, CYP3A37, and CYP8B1 in females. Although transcription factors (TFs) including SREBF1 and COUP-TFII were predicted to be commonly activated in both genders, some TFs were activated in a gender-dependent manner, such as PPARa in males and BRCA1 and IRF9 in females. Taken together, our results provided an insight into the mode of action of PB on the chicken embryos.
Collapse
Affiliation(s)
- Jiahua Guo
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Shohei Ito
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Kimika Yamamoto
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577 Japan.
| |
Collapse
|
6
|
Yamada T. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb) 2018; 7:681-696. [PMID: 30090614 PMCID: PMC6062351 DOI: 10.1039/c7tx00288b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent carcinogenicity studies are useful for screening for human carcinogens but they are not perfect. Some modes of action (MOAs) lead to cancers in both experimental rodents and humans, but others that lead to cancers in rodents do not do so in humans. Therefore, analysing the MOAs by which chemicals produce tumours in rodents and determining the relevance of such tumour data for human risk are critical. Recently, experimental data were obtained as case examples of an evaluation of the human relevance of pyrethroid (metofluthrin and momfluorothrin)- and pyrethrins-induced liver tumours in rats based on MOA. The MOA analysis, based on the International Programme on Chemical Safety (IPCS) framework, concluded that experimental data strongly support that the postulated MOA for metofluthrin-, momfluorothrin- and pyrethrins-produced rat hepatocellular tumours is mediated by constitutive androstane receptor (CAR) activation. Since metofluthrin and momfluorothrin are close structural analogues, reproducible outcomes for both chemicals provide confidence in the MOA findings. Furthermore, cultured human hepatocyte studies and humanized chimeric mouse liver studies demonstrated species difference between human hepatocytes (refractory to the mitogenic effects of these compounds) and rat hepatocytes (sensitive to their mitogenic effects). These data strongly support the hypothesis that the CAR-mediated MOA for liver tumorigenesis is of low carcinogenic risk for humans. In this research, in addition to cultured human hepatocyte studies, the usefulness of the humanized chimeric liver mouse models was clearly demonstrated. These data substantially influenced decisions in regulatory toxicology. In this review I comprehensively discuss the human relevance of the CAR-mediated MOA for rodent liver tumorigenesis based on published information, including our recent molecular research on CAR-mediated MOA.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
7
|
Ohara A, Takahashi Y, Kondo M, Okuda Y, Takeda S, Kushida M, Kobayashi K, Sumida K, Yamada T. Candidate genes responsible for early key events of phenobarbital-promoted mouse hepatocellular tumorigenesis based on differentiation of regulating genes between wild type mice and humanized chimeric mice. Toxicol Res (Camb) 2017; 6:795-813. [PMID: 30090543 PMCID: PMC6062386 DOI: 10.1039/c7tx00163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
Phenobarbital (PB) is a nongenotoxic hepatocellular carcinogen in rodents. PB induces hepatocellular tumors by activating the constitutive androstane receptor (CAR). Some previous research has suggested the possible involvement of epigenetic regulation in PB-promoted hepatocellular tumorigenesis, but the details of its molecular mechanism are not fully understood. In the present study, comprehensive analyses of DNA methylation, hydroxymethylation and gene expression using microarrays were performed in mouse hepatocellular adenomas induced by a single 90 mg kg-1 intraperitoneal injection dose of diethylnitrosamine (DEN) followed by 500 ppm PB in the diet for 27 weeks. DNA modification and expression of hundreds of genes are coordinately altered in PB-induced mouse hepatocellular adenomas. Of these, gene network analysis showed alterations of CAR signaling and tumor development-related genes. Pathway enrichment analysis revealed that differentially methylated or hydroxymethylated genes belong mainly to pathways involved in development, immune response and cancer cells in contrast to differentially expressed genes belonging primarily to the cell cycle. Furthermore, overlap was evaluated between the genes with altered expression levels with 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) alterations in mouse hepatocellular adenoma induced by DEN/PB and the genes with altered expression levels in the liver of CD-1 mice or humanized chimeric mice treated with PB for 7 days. With the integration of transcriptomic and epigenetic approaches, we detected candidate genes responsible for early key events of PB-promoted mouse hepatocellular tumorigenesis. Interestingly, these genes did not overlap with genes altered by the PB treatment of humanized chimeric mice, thus suggesting a species difference between the effects of PB in mouse and human hepatocytes.
Collapse
Affiliation(s)
- Ayako Ohara
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Yasuhiko Takahashi
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Miwa Kondo
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Yu Okuda
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Shuji Takeda
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Masahiko Kushida
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Kentaro Kobayashi
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Kayo Sumida
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| | - Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd. , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
8
|
Goodman JI. Incorporation of an Epigenetic Evaluation into Safety Assessment: What we First Need to Know. CURRENT OPINION IN TOXICOLOGY 2017; 3:20-24. [PMID: 30740577 DOI: 10.1016/j.cotox.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rapidly evolving field of epigenetic regulation of gene expression is having an impact across the spectrum of biomedical research. Toxicologists have embraced this area as evidenced by their increasing focus on discerning potential epigenetic mechanisms underlying mechanisms by which chemical and physical agents might cause toxicity. It is not surprising that an interest in epigenetic mechanisms of toxicity would lead to a desire to incorporate an epigenetic component into safety assessment. However, premature movement in this direction carries the risk of imposing more confusion than light. This commentary provides an overview of epigenetics, with an emphasis on how the various epigenetic parameters are integrated, as a basis for understanding the complexity behind the desire to include epigenetic evaluations in safety evaluations. Basically, we have much more to learn before turning the goal into a reality. However, considerable progress has been made with regard to using epigenetic profiles as signatures of xenobiotic exposure.
Collapse
Affiliation(s)
- Jay I Goodman
- Michigan State University Department of Pharmacology and Toxicology East Lansing, Michigan 48824 USA
| |
Collapse
|
9
|
Kuwata K, Inoue K, Ichimura R, Takahashi M, Kodama Y, Shibutani M, Yoshida M. Involvement of Mouse Constitutive Androstane Receptor in Acifluorfen-Induced Liver Injury and Subsequent Tumor Development. Toxicol Sci 2016; 151:271-85. [DOI: 10.1093/toxsci/kfw040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Pin CL, Ryan JF, Mehmood R. Acinar cell reprogramming: a clinically important target in pancreatic disease. Epigenomics 2015; 7:267-81. [PMID: 25942535 DOI: 10.2217/epi.14.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinar cells of the pancreas produce the majority of enzymes required for digestion and make up >90% of the cells within the pancreas. Due to a common developmental origin and the plastic nature of the acinar cell phenotype, these cells have been identified as a possible source of β cells as a therapeutic option for Type I diabetes. However, recent evidence indicates that acinar cells are the main source of pancreatic intraepithelial neoplasias (PanINs), the predecessor of pancreatic ductal adenocarcinoma (PDAC). The conversion of acinar cells to either β cells or precursors to PDAC is dependent on reprogramming of the cells to a more primitive, progenitor-like phenotype, which involves changes in transcription factor expression and activity, and changes in their epigenetic program. This review will focus on the mechanisms that promote acinar cell reprogramming, as well as the factors that may affect these mechanisms.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Paediatrics, Physiology & Pharmacology, & Oncology, University of Western Ontario, London, ON N6C 2V5, Canada
| | | | | |
Collapse
|
11
|
Tamura K, Inoue K, Takahashi M, Matsuo S, Irie K, Kodama Y, Gamo T, Ozawa S, Yoshida M. Involvement of constitutive androstane receptor in liver hypertrophy and liver tumor development induced by triazole fungicides. Food Chem Toxicol 2015; 78:86-95. [DOI: 10.1016/j.fct.2015.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/02/2015] [Accepted: 01/13/2015] [Indexed: 01/30/2023]
|
12
|
Winans B, Nagari A, Chae M, Post CM, Ko CI, Puga A, Kraus WL, Lawrence BP. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:4446-57. [PMID: 25810390 DOI: 10.4049/jimmunol.1402044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
Abstract
Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8(+) T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8(+) T cells prior to and during infection. Altered transcriptional profiles in CD8(+) T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8(+) T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life.
Collapse
Affiliation(s)
- Bethany Winans
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Minho Chae
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Christina M Post
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - B Paige Lawrence
- Department of Environmental Medicine and Environmental Health Science Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642;
| |
Collapse
|
13
|
Luisier R, Lempiäinen H, Scherbichler N, Braeuning A, Geissler M, Dubost V, Müller A, Scheer N, Chibout SD, Hara H, Picard F, Theil D, Couttet P, Vitobello A, Grenet O, Grasl-Kraupp B, Ellinger-Ziegelbauer H, Thomson JP, Meehan RR, Elcombe CR, Henderson CJ, Wolf CR, Schwarz M, Moulin P, Terranova R, Moggs JG. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci 2014; 139:501-11. [PMID: 24690595 DOI: 10.1093/toxsci/kfu038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Klepeisz P, Sagmeister S, Haudek-Prinz V, Pichlbauer M, Grasl-Kraupp B, Gerner C. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers. PLoS One 2013; 8:e76137. [PMID: 24204595 PMCID: PMC3812042 DOI: 10.1371/journal.pone.0076137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.
Collapse
Affiliation(s)
- Philip Klepeisz
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sandra Sagmeister
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Verena Haudek-Prinz
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Pichlbauer
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Inner Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
16
|
Thomson JP, Moggs JG, Wolf CR, Meehan RR. Epigenetic profiles as defined signatures of xenobiotic exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:3-9. [PMID: 24001620 DOI: 10.1016/j.mrgentox.2013.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
With the advent of high resolution sequencing technologies there has been increasing interest in the study of genome-wide epigenetic modification patterns that govern the underlying gene expression events of a particular cell or tissue type. There is now mounting evidence that perturbations to the epigenetic landscape occur during a host of cellular processes including normal proliferation/differentiation and aberrant outcomes such as carcinogenesis. Furthermore, epigenetic perturbations have been associated with exposure to a range of drugs and toxicants, including non-genotoxic carcinogens (NGCs). Although a variety of epigenetic modifications induced by NGCs have been studied previously, recent genome-wide integrated epigenomic and transcriptomic studies reveal for the first time the extent and dynamic nature of the epigenetic perturbations resulting from xenobiotic exposure. The interrogation and integration of one such epigenetic mark, the newly discovered 5-hydroxymethylcytosine (5hmC) modification, reveals that drug treatment associated perturbations of the epigenome can result in unique epigenetic signatures. This review focuses on how recent advances in the field of epigenetics can enhance our mechanistic understanding of xenobiotic exposure and provide novel safety biomarkers.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jonathan G Moggs
- Discovery & Investigative Safety, Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
17
|
Thomson JP, Hunter JM, Lempiäinen H, Müller A, Terranova R, Moggs JG, Meehan RR. Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver. Nucleic Acids Res 2013; 41:5639-54. [PMID: 23598998 PMCID: PMC3675467 DOI: 10.1093/nar/gkt232] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant DNA methylation is a common feature of neoplastic lesions, and early detection of such changes may provide powerful mechanistic insights and biomarkers for carcinogenesis. Here, we investigate dynamic changes in the mouse liver DNA methylome associated with short (1 day) and prolonged (7, 28 and 91 days) exposure to the rodent liver non-genotoxic carcinogen, phenobarbital (PB). We find that the distribution of 5mC/5hmC is highly consistent between untreated individuals of a similar age; yet, changes during liver maturation in a transcriptionally dependent manner. Following drug treatment, we identify and validate a series of differentially methylated or hydroxymethylated regions: exposure results in staged transcriptional responses with distinct kinetic profiles that strongly correlate with promoter proximal region 5hmC levels. Furthermore, reciprocal changes for both 5mC and 5hmC in response to PB suggest that active demethylation may be taking place at each set of these loci via a 5hmC intermediate. Finally, we identify potential early biomarkers for non-genotoxic carcinogenesis, including several genes aberrantly expressed in liver cancer. Our work suggests that 5hmC profiling can be used as an indicator of cell states during organ maturation and drug-induced responses and provides novel epigenetic signatures for non-genotoxic carcinogen exposure.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Sakamoto Y, Inoue K, Takahashi M, Taketa Y, Kodama Y, Nemoto K, Degawa M, Gamou T, Ozawa S, Nishikawa A, Yoshida M. Different Pathways of Constitutive Androstane Receptor–mediated Liver Hypertrophy and Hepatocarcinogenesis in Mice Treated with Piperonyl Butoxide or Decabromodiphenyl Ether. Toxicol Pathol 2013; 41:1078-92. [DOI: 10.1177/0192623313482055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The constitutive androstane receptor (CAR) is essential for Cyp2b induction, liver hypertrophy, and hepatocarcinogenesis in response to phenobarbital (PB). Liver hypertrophy with Cyp2b induction is a major mode of action of hepatocarcinogenesis in rodents. However, it remains unclear whether CAR is involved in the response to many other nongenotoxic hepatocarcinogens besides PB. In this study, we investigated CAR involvement in liver hypertrophy and hepatocarcinogenesis of Cyp2b-inducing nongenotoxic hepatocarcinogens, piperonyl butoxide (PBO), and decabromodiphenyl ether (DBDE), using wild-type and CAR knockout (CARKO) male mice. PB was used as the positive control. In the wild-type mice, 4-week treatment with PBO, DBDE, or PB induced hepatocellular hypertrophy with increased Cyp2b10 messenger RNA and Cyp2b protein expression. In CARKO mice, only PBO showed liver hypertrophy with Cyp2b10 and Cyp3a11 induction. After 27-week treatment following diethylnitrosamine initiation, PBO and PB generated many eosinophilic altered foci/adenomas in wild-type mice; however, the lesions were far less frequent in CARKO mice. DBDE increased the multiplicity of basophilic altered foci/adenomas in wild-type and CARKO mice. Our findings indicate that murine CAR plays major roles in hepatocarcinogenesis but not in liver hypertrophy of PBO. DBDE may act via CAR-independent pathways during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yohei Sakamoto
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Yoshikazu Taketa
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Yukio Kodama
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masakuni Degawa
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshie Gamou
- Department of Pharmacodynamics Molecular Genetics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Shogo Ozawa
- Department of Pharmacodynamics Molecular Genetics, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Center, National Institute of Health Sciences, Tokyo, Japan
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
19
|
Lempiäinen H, Couttet P, Bolognani F, Müller A, Dubost V, Luisier R, Del Rio Espinola A, Vitry V, Unterberger EB, Thomson JP, Treindl F, Metzger U, Wrzodek C, Hahne F, Zollinger T, Brasa S, Kalteis M, Marcellin M, Giudicelli F, Braeuning A, Morawiec L, Zamurovic N, Längle U, Scheer N, Schübeler D, Goodman J, Chibout SD, Marlowe J, Theil D, Heard DJ, Grenet O, Zell A, Templin MF, Meehan RR, Wolf RC, Elcombe CR, Schwarz M, Moulin P, Terranova R, Moggs JG. Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion. Toxicol Sci 2012; 131:375-86. [PMID: 23091169 DOI: 10.1093/toxsci/kfs303] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Currie RA. Toxicogenomics: the challenges and opportunities to identify biomarkers, signatures and thresholds to support mode-of-action. Mutat Res 2012; 746:97-103. [PMID: 22445948 DOI: 10.1016/j.mrgentox.2012.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 12/20/2022]
Abstract
Toxicogenomics (TGx) can be defined as the application of "omics" techniques to toxicology and risk assessment. By identifying molecular changes associated with toxicity, TGx data might assist hazard identification and investigate causes. Early technical challenges were evaluated and addressed by consortia (e.g. ISLI/HESI and the Microarray Quality Control consortium), which demonstrated that TGx gave reliable and reproducible information. The MAQC also produced "best practice on signature generation" after conducting an extensive evaluation of different methods on common datasets. Two findings of note were the need for methods that control batch variability, and that the predictive ability of a signature changes in concert with the variability of the endpoint. The key challenge remaining is data interpretation, because TGx can identify molecular changes that are causal, associated with or incidental to toxicity. Application of Bradford Hill's tests for causation, which are used to build mode of action (MOA) arguments, can produce reasonable hypotheses linking altered pathways to phenotypic changes. However, challenges in interpretation still remain: are all pathway changes equal, which are most important and plausibly linked to toxicity? Therefore the expert judgement of the toxicologist is still needed. There are theoretical reasons why consistent alterations across a metabolic pathway are important, but similar changes in signalling pathways may not alter information flow. At the molecular level thresholds may be due to the inherent properties of the regulatory network, for example switch-like behaviours from some network motifs (e.g. positive feedback) in the perturbed pathway leading to the toxicity. The application of systems biology methods to TGx data can generate hypotheses that explain why a threshold response exists. However, are we adequately trained to make these judgments? There is a need for collaborative efforts between regulators, industry and academia to properly define how these technologies can be applied using appropriate case-studies.
Collapse
|
21
|
Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats. Arch Toxicol 2011; 85:1475-84. [PMID: 21445586 DOI: 10.1007/s00204-011-0696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/10/2011] [Indexed: 02/06/2023]
Abstract
To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.
Collapse
|
22
|
Lempiäinen H, Müller A, Brasa S, Teo SS, Roloff TC, Morawiec L, Zamurovic N, Vicart A, Funhoff E, Couttet P, Schübeler D, Grenet O, Marlowe J, Moggs J, Terranova R. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice. PLoS One 2011; 6:e18216. [PMID: 21455306 PMCID: PMC3063791 DOI: 10.1371/journal.pone.0018216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Müller
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sarah Brasa
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Soon-Siong Teo
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Laurent Morawiec
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natasa Zamurovic
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Axel Vicart
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Enrico Funhoff
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Grenet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jennifer Marlowe
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rémi Terranova
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Tryndyak VP, Han T, Muskhelishvili L, Fuscoe JC, Ross SA, Beland FA, Pogribny IP. Coupling global methylation and gene expression profiles reveal key pathophysiological events in liver injury induced by a methyl-deficient diet. Mol Nutr Food Res 2010; 55:411-8. [PMID: 20938992 DOI: 10.1002/mnfr.201000300] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 07/31/2010] [Accepted: 08/17/2010] [Indexed: 01/23/2023]
Abstract
SCOPE A methyl-deficient diet induces liver injury similar to human nonalcoholic steatohepatitis, one of the main risk factors for the development of hepatocellular carcinoma. Previous studies have demonstrated that this diet perturbs DNA methylation by causing a profound loss of global cytosine methylation, predominantly at heavily methylated repetitive sequences. However, whether methyl deficiency affects the methylation status of gene promoters has not been explored. METHODS AND RESULTS Mouse gene expression and CpG island microarrays were used to characterize the gene expression and CpG island methylation profiles in the livers of C57BL/6J mice fed a methyl-deficient diet. We detected 164 genes that were differentially expressed and exhibited an inverse relationship between the gene expression and the extent of CpG island methylation. Furthermore, these genes were associated with altered lipid and glucose metabolism, DNA damage and repair, apoptosis, the development of fibrosis, and liver tissue remodeling. Although there were both increased and decreased levels of CpG island methylation, the number of hypomethylated genes was substantially greater than the number of hypermethylated genes. CONCLUSION The results this study demonstrate that pairing methylation profiles with gene expression profiles is a powerful approach to identify dysregulated high-priority fundamental pathophysiological pathways associated with disease development.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|