1
|
Harding CF, Liao D, Persaud R, DeStefano RA, Page KG, Stalbow LL, Roa T, Ford JC, Goman KD, Pytte CL. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav Brain Res 2023; 442:114294. [PMID: 36638914 PMCID: PMC10460635 DOI: 10.1016/j.bbr.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1β-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.
Collapse
Affiliation(s)
- Cheryl F Harding
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - David Liao
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA
| | - Ramona Persaud
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Richard A DeStefano
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kimberly G Page
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Lauren L Stalbow
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| | - Tina Roa
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jordan C Ford
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ksenia D Goman
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Carolyn L Pytte
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| |
Collapse
|
2
|
In Vitro Metabolism of Phenylspirodrimanes Derived from the Indoor Fungus Stachybotrys. Toxins (Basel) 2022; 14:toxins14060395. [PMID: 35737056 PMCID: PMC9227918 DOI: 10.3390/toxins14060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 12/01/2022] Open
Abstract
Fungi belonging to the genus Stachybotrys are frequently detected in water-damaged indoor environments, and a potential correlation between emerging health problems of inhabitants of affected housing and the fungi is controversially discussed. Secondary metabolites (i.e., mycotoxins) produced by Stachybotrys, such as the highly toxic macrocyclic trichothecenes (MCTs), are of potential concern to human health. The present study, however, focused on the potential effects of the more broadly and abundantly formed group of phenylspirodrimanes (PSDs). The phase I and II metabolism of four structurally different PSDs were investigated in vitro using hepatic models in combination with high-performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS) analysis. In addition to metabolite detection by HRMS, isolation and structure elucidation by nuclear magnetic resonance spectroscopy (NMR) was part of the conducted study as well.
Collapse
|
3
|
Mold inhalation causes innate immune activation, neural, cognitive and emotional dysfunction. Brain Behav Immun 2020; 87:218-228. [PMID: 31751617 PMCID: PMC7231651 DOI: 10.1016/j.bbi.2019.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 01/01/2023] Open
Abstract
Individuals living or working in moldy buildings complain of a variety of health problems including pain, fatigue, increased anxiety, depression, and cognitive deficits. The ability of mold to cause such symptoms is controversial since no published research has examined the effects of controlled mold exposure on brain function or proposed a plausible mechanism of action. Patient symptoms following mold exposure are indistinguishable from those caused by innate immune activation following bacterial or viral exposure. We tested the hypothesis that repeated, quantified doses of both toxic and nontoxic mold stimuli would cause innate immune activation with concomitant neural effects and cognitive, emotional, and behavioral symptoms. We intranasally administered either 1) intact, toxic Stachybotrys spores; 2) extracted, nontoxic Stachybotrys spores; or 3) saline vehicle to mice. As predicted, intact spores increased interleukin-1β immunoreactivity in the hippocampus. Both spore types decreased neurogenesis and caused striking contextual memory deficits in young mice, while decreasing pain thresholds and enhancing auditory-cued memory in older mice. Nontoxic spores also increased anxiety-like behavior. Levels of hippocampal immune activation correlated with decreased neurogenesis, contextual memory deficits, and/or enhanced auditory-cued fear memory. Innate-immune activation may explain how both toxic mold and nontoxic mold skeletal elements caused cognitive and emotional dysfunction.
Collapse
|
6
|
Comparison of Anorectic Potencies of the Trichothecenes T-2 Toxin, HT-2 Toxin and Satratoxin G to the Ipecac Alkaloid Emetine. Toxicol Rep 2015; 2:238-251. [PMID: 25932382 PMCID: PMC4410735 DOI: 10.1016/j.toxrep.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anorectic effects of natural toxins were compared in the mouse. Parenteral and oral T-2 and HT-2 toxin exposure caused prolonged anorexia. Emetine was more potent when delivered orally as compared to parenterally. Emetine's effects were less than T-2 and HT-2 toxin and more transient. Parental and intranasal delivery satratoxin G caused transient anorectic effects.
Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g., satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.
Collapse
|
7
|
Zabka M, Pavela R, Prokinova E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. CHEMOSPHERE 2014; 112:443-8. [PMID: 25048938 DOI: 10.1016/j.chemosphere.2014.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/02/2014] [Accepted: 05/04/2014] [Indexed: 05/18/2023]
Abstract
Health affecting, loss-inducing or otherwise harmful fungal pathogens (molds) pose a serious challenge in many areas of human activities. On the contrary, frequent use of synthetic fungicides is undesirable in some cases and may be equally problematic. Moreover, the ever more increasing fungal resistance against commercial synthetic fungicides justifies development of rising efforts to seek new effective, while environmentally friendly alternatives. Botanical fungicides based on Essential oils (EOs) undoubtedly provide such an alternative. The study explores the efficacy of 20 EOs against Alternaria alternata, Stachybotrys chartarum, Cladosporium cladosporioides and Aspergillus niger, related to abundance of majority active substances. Minimum inhibitory concentration (MIC100 and MIC50) was evaluated. GC-MS analysis revealed high abundance of highly effective phenolic compounds whose different molecular structures correlates with differences in EOs efficacy. The efficacy of some EOs, observed in our study, can be similar to the levels of some synthetic fungicides used in medicine and agriculture e.g. sometimes problematic azole-based formulations. Thanks to the EOs environmental safety and natural origin, they offer the potential to become an alternative where the use of synthetic fungicides is impossible for various reasons.
Collapse
Affiliation(s)
- Martin Zabka
- Crop Research Institute, Drnovska 507, Prague 161 06, Czech Republic.
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, Prague 161 06, Czech Republic
| | - Evzenie Prokinova
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Kamycka 129, Prague 160 00, Czech Republic
| |
Collapse
|
8
|
Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators Inflamm 2014; 2014:708193. [PMID: 24523573 PMCID: PMC3910075 DOI: 10.1155/2014/708193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 12/30/2022] Open
Abstract
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.
Collapse
|
9
|
Carey SA, Plopper CG, Hyde DM, Islam Z, Pestka JJ, Harkema JR. Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys. Toxicol Pathol 2012; 40:887-98. [PMID: 22552393 DOI: 10.1177/0192623312444028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Satratoxin-G (SG) is a trichothecene mycotoxin of Stachybotrys chartarum, the black mold suggested to contribute etiologically to illnesses associated with water-damaged buildings. We have reported that intranasal exposure to SG evokes apoptosis of olfactory sensory neurons (OSNs) and acute inflammation in the nose and brain of laboratory mice. To further assess the potential human risk of nasal airway injury and neurotoxicity, we developed a model of SG exposure in monkeys, whose nasal airways more closely resemble those of humans. Adult, male rhesus macaques received a single intranasal instillation of 20 µg SG (high dose, n = 3), or 5 µg SG daily for four days (repeated low dose, n = 3) in one nasal passage, and saline vehicle in the contralateral nasal passage. Nasal tissues were examined using light and electron microscopy and morphometric analysis. SG induced acute rhinitis, atrophy of the olfactory epithelium (OE), and apoptosis of OSNs in both groups. High-dose and repeated low-dose SG elicited a 13% and 66% reduction in OSN volume density, and a 14-fold and 24-fold increase in apoptotic cells of the OE, respectively. This model provides new insight into the potential risk of nasal airway injury and neurotoxicity caused by exposure to water-damaged buildings.
Collapse
Affiliation(s)
- Stephan A Carey
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Jia C, Sangsiri S, Belock B, Iqbal TR, Pestka JJ, Hegg CC. ATP mediates neuroprotective and neuroproliferative effects in mouse olfactory epithelium following exposure to satratoxin G in vitro and in vivo. Toxicol Sci 2011; 124:169-78. [PMID: 21865290 DOI: 10.1093/toxsci/kfr213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intranasal aspiration of satratoxin G (SG), a mycotoxin produced by the black mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) in mouse olfactory epithelium (OE) through unknown mechanisms. Here, we show a dose-dependent induction of apoptosis 24 h post-SG exposure in vitro as measured by increased activated caspases in the OP6 olfactory placodal cell line and increased propidium iodide staining in primary OE cell cultures. Intranasal aspiration of SG increased TUNEL (Terminal dUTP Nick End Labeling) staining in the neuronal layer of the OE and significantly increased the latency to find a buried food pellet, confirming that SG selectively induces neuronal apoptosis and demonstrating that SG impairs the sense of smell. Next, we investigated whether ATP can prevent SG-induced OE toxicity. ATP did not decrease apoptosis under physiological conditions but significantly reduced SG-induced OSN apoptosis in vivo and in vitro. Furthermore, purinergic receptor inhibition significantly increased apoptosis in OE primary cell culture and in vivo. These data indicate that ATP is neuroprotective against SG-induced OE toxicity. The number of cells that incorporated 5'-bromodeoxyuridine, a measure of proliferation, was significantly increased 3 and 6 days post-SG aspiration. Treatment with purinergic receptor antagonists significantly reduced SG-induced cell proliferation, whereas post-treatment with ATP significantly potentiated SG-induced cell proliferation. These data indicate that ATP is released and promotes cell proliferation via activation of purinergic receptors in SG-induced OE injury. Thus, the purinergic system is a therapeutic target to alleviate or restore the loss of OSNs.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|