1
|
Yamamoto K, Tochikawa S, Miura Y, Matsunobu S, Hirose Y, Eki T. Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains. Appl Microbiol Biotechnol 2024; 108:188. [PMID: 38300351 PMCID: PMC10834598 DOI: 10.1007/s00253-024-13020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shintaro Tochikawa
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuuki Miura
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shogo Matsunobu
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Laboratory of Genomics and Photobiology, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
2
|
Xiao Y, Wang Z, Sun W, Luan Y, Piao M, Deng Y. Characterization and formation mechanisms of viable, but putatively non-culturable brewer's yeast induced by isomerized hop extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Yeast-based genotoxicity tests for assessing DNA alterations and DNA stress responses: a 40-year overview. Appl Microbiol Biotechnol 2018; 102:2493-2507. [PMID: 29423630 DOI: 10.1007/s00253-018-8783-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
By damaging DNA molecules, genotoxicants cause genetic mutations and also increase human susceptibility to cancers and genetic diseases. Over the past four decades, several assays have been developed in the budding yeast Saccharomyces cerevisiae to screen potential genotoxic substances and provide alternatives to animal-based genotoxicity tests. These yeast-based genotoxicity tests are either DNA alteration-based or DNA stress-response reporter-based. The former, which came first, were developed from the genetic studies conducted on various types of DNA alterations in yeast cells. Despite their limited throughput capabilities, some of these tests have been used as short-term genotoxicity tests in addition to bacteria- or mammalian cell-based tests. In contrast, the latter tests are based on the emergent transcriptional induction of DNA repair-related genes via activation of the DNA damage checkpoint kinase cascade triggered by DNA damage. Some of these reporter assays have been linked to DNA damage-responsive promoters to assess chemical carcinogenicity and ecotoxicity in environmental samples. Yeast-mediated genotoxicity tests are being continuously improved by increasing the permeability of yeast cell walls, by the ectopic expression of mammalian cytochrome P450 systems, by the use of DNA repair-deficient host strains, and by integrating them into high-throughput formats or microfluidic devices. Notably, yeast-based reporter assays linked with the newer toxicogenomic approaches are becoming powerful short-term genotoxicity tests for large numbers of compounds. These tests can also be used to detect polluted environmental samples, and as effective screening tools during anticancer drug development.
Collapse
|
4
|
Suzuki H, Sakabe T, Hirose Y, Eki T. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage. Appl Microbiol Biotechnol 2016; 101:659-671. [PMID: 27766356 DOI: 10.1007/s00253-016-7911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Collapse
Affiliation(s)
- Hajime Suzuki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Takahiro Sakabe
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.,The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
5
|
Zhang C, Li Z, Zhang X, Yuan L, Dai H, Xiao W. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses. Yeast 2015; 33:5-19. [DOI: 10.1002/yea.3135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/04/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhouquan Li
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Li Yuan
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Heping Dai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Wei Xiao
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
- Department of Microbiology and Immunology; University of Saskatchewan; Saskatoon Canada
| |
Collapse
|
6
|
Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Appl Environ Microbiol 2015; 81:8098-107. [PMID: 26386067 DOI: 10.1128/aem.02035-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles.
Collapse
|
7
|
YAP1 and AR interactions contribute to the switch from androgen-dependent to castration-resistant growth in prostate cancer. Nat Commun 2015; 6:8126. [PMID: 28230103 DOI: 10.1038/ncomms9126] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/21/2015] [Indexed: 12/25/2022] Open
Abstract
The transcriptional co-activator Yes-associated protein 1 (YAP1), a key nuclear effector of the Hippo pathway, is a potent oncogene, and yet, the interaction between YAP1 and androgen receptor (AR) remains unexplored. Here we identify YAP1 as a physiological binding partner and positive regulator of AR in prostate cancer. YAP1 and AR co-localize and interact with each other predominantly within cell nuclei by an androgen-dependent mechanism in a hormone naive and an androgen-independent mechanism in castration-resistant prostate cancer cells. The growth suppressor MST1 kinase modulates androgen-dependent and -independent nuclear YAP1-AR interactions through directly regulating YAP1 nuclear accumulation. Disruption of YAP1 signalling by genetic (RNAi) and pharmacological (Verteporfin) approaches suppresses AR-dependent gene expression and prostate cancer cell growth. These findings indicate that the YAP1-AR axis may have a critical role in prostate cancer progression and serves as a viable drug target.
Collapse
|
8
|
Lu Y, Tian Y, Wang R, Wu Q, Zhang Y, Li X. Dual fluorescent protein-based bioassay system for the detection of genotoxic chemical substances in Saccharomyces cerevisiae. Toxicol Mech Methods 2015; 25:698-707. [DOI: 10.3109/15376516.2015.1070305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yixin Lu
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Yongjie Tian
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Ruikun Wang
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Qianqian Wu
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Yu Zhang
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
| | - Xiangming Li
- Department of Preventive Medicine, Yangzhou Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China and
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, PR China
| |
Collapse
|
9
|
Yang F, Zhuang S, Zhang C, Dai H, Liu W. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro. Toxicol Appl Pharmacol 2013; 269:226-32. [PMID: 23566952 DOI: 10.1016/j.taap.2013.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cells and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health.
Collapse
Affiliation(s)
- Fangxing Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | | | | | | | | |
Collapse
|
10
|
Wei T, Zhang C, Xu X, Hanna M, Zhang X, Wang Y, Dai H, Xiao W. Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosens Bioelectron 2013; 44:138-45. [PMID: 23416315 DOI: 10.1016/j.bios.2013.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
Abstract
It has been well established that essentially all microbial mutagens are rodent carcinogens, yet current mutagen detection systems are limited by their detection sensitivity. Here we report the construction of a pair of hypersensitive biosensors by optimizing both reporters and the host strain. The resulting RNR3-yEGFP and HUG1-yEGFP reporters and the septuple yeast mutant in combination with the automated protocol not only remarkably enhance the detection sensitivity, but also allow a high throughput screen of environmental genotoxins. This system is deemed much more sensitive than similar yeast and bacterium-based tests for all selected chemicals examined in this study.
Collapse
Affiliation(s)
- Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao X, Dong T. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection. Anal Chem 2012; 84:8541-8. [PMID: 22985130 DOI: 10.1021/ac3020609] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.
Collapse
Affiliation(s)
- Xinyan Zhao
- (IMST) Department of Micro and Nano Systems Technology, Faculty of Engineering and Marine Sciences, (HiVE) Vestfold University College, Norway
| | | |
Collapse
|