1
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Abstract
Anesthesiologists routinely manage patients receiving drugs and agents, all of which have the potential for anaphylaxis, the life-threatening presentation of an allergic reaction. Clinicians must be ready to diagnose and manage the acute cardiopulmonary dysfunction that occurs.
Collapse
Affiliation(s)
- Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, Strasbourg, France
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jerrold H Levy
- Departments of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
3
|
Konrath S, Mailer RK, Renné T. Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces. Hamostaseologie 2021; 41:489-501. [PMID: 34592776 DOI: 10.1055/a-1528-0499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Factor XII (FXII) is a serine protease zymogen produced by hepatocytes and secreted into plasma. The highly glycosylated coagulation protein consists of six domains and a proline-rich region that regulate activation and function. Activation of FXII results from a conformational change induced by binding ("contact") with negatively charged surfaces. The activated serine protease FXIIa drives both the proinflammatory kallikrein-kinin pathway and the procoagulant intrinsic coagulation cascade, respectively. Deficiency in FXII is associated with a prolonged activated partial thromboplastin time (aPTT) but not with an increased bleeding tendency. However, genetic or pharmacological deficiency impairs both arterial and venous thrombosis in experimental models. This review summarizes current knowledge of FXII structure, mechanisms of FXII contact activation, and the importance of FXII for diagnostic coagulation testing and thrombosis.
Collapse
Affiliation(s)
- Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Lin L, Li S, Gao N, Wang W, Zhang T, Yang L, Yang X, Luo D, Ji X, Zhao J. The Toxicology of Native Fucosylated Glycosaminoglycans and the Safety of Their Depolymerized Products as Anticoagulants. Mar Drugs 2021; 19:487. [PMID: 34564149 PMCID: PMC8467514 DOI: 10.3390/md19090487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycosaminoglycan (FG) from sea cucumber is a potent anticoagulant by inhibiting intrinsic coagulation tenase (iXase). However, high-molecular-weight FGs can activate platelets and plasma contact system, and induce hypotension in rats, which limits its application. Herein, we found that FG from T. ananas (TaFG) and FG from H. fuscopunctata (HfFG) at 4.0 mg/kg (i.v.) could cause significant cardiovascular and respiratory dysfunction in rats, even lethality, while their depolymerized products had no obvious side effects. After injection, native FG increased rat plasma kallikrein activity and levels of the vasoactive peptide bradykinin (BK), consistent with their contact activation activity, which was assumed to be the cause of hypotension in rats. However, the hemodynamic effects of native FG cannot be prevented by the BK receptor antagonist. Further study showed that native FG induced in vivo procoagulation, thrombocytopenia, and pulmonary embolism. Additionally, its lethal effect could be prevented by anticoagulant combined with antiplatelet drugs. In summary, the acute toxicity of native FG is mainly ascribed to pulmonary microvessel embolism due to platelet aggregation and contact activation-mediated coagulation, while depolymerized FG is a safe anticoagulant candidate by selectively targeting iXase.
Collapse
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Dan Luo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650201, China;
| | - Xu Ji
- School of Chemical Science and Technology, Yunnan University, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
5
|
Yang Z, Fan X, Cheng W, Ding Y, Zhang W. AIE Nanoassemblies for Discrimination of Glycosaminoglycans and Heparin Quality Control. Anal Chem 2019; 91:10295-10301. [DOI: 10.1021/acs.analchem.9b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyu Yang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Wenjing Cheng
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Yubin Ding
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| |
Collapse
|
6
|
Lin L, Xu L, Xiao C, Zhou L, Gao N, Wu M, Zhao J. Plasma contact activation by a fucosylated chondroitin sulfate and its structure–activity relationship study. Glycobiology 2018; 28:754-764. [PMID: 30016441 DOI: 10.1093/glycob/cwy067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Hogwood J, Naggi A, Torri G, Page C, Rigsby P, Mulloy B, Gray E. The effect of increasing the sulfation level of chondroitin sulfate on anticoagulant specific activity and activation of the kinin system. PLoS One 2018; 13:e0193482. [PMID: 29494632 PMCID: PMC5832253 DOI: 10.1371/journal.pone.0193482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/12/2018] [Indexed: 11/29/2022] Open
Abstract
Oversulfated chondroitin sulfate (OSCS) was identified as a contaminant in certain heparin preparations as the cause of adverse reactions in patients. OSCS was found to possess both plasma anticoagulant activity and the ability to activate prekallikrein to kallikrein. Differentially sulfated chondroitin sulfates were prepared by synthetic modification of chondroitin sulfate and were compared to the activity of OSCS purified from contaminated heparin. Whilst chondroitin sulfate was found to have minimal anticoagulant activity, increasing sulfation levels produced an anticoagulant response which we directly show for the first time is mediated through heparin cofactor II. However, the tetra-sulfated preparations did not possess any higher anticoagulant activity than several tri-sulfated variants, and also had lower heparin cofactor II mediated activity. Activation of prekallikrein was concentration dependent for all samples, and broadly increased with the degree of sulfation, though the di-sulfated preparation was able to form more kallikrein than some of the tri-sulfated preparations. The ability of the samples to activate the kinin system, as measured by bradykinin, was observed to be through kallikrein generation. These results show that whilst an increase in sulfation of chondroitin sulfate did cause an increase in anticoagulant activity and activation of the kinin system, there may be subtler structural interactions other than sulfation at play given the different responses observed.
Collapse
Affiliation(s)
- J. Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, Herts, United Kingdom
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, United Kingdom
- * E-mail:
| | - A. Naggi
- Institute for Chemical and Biochemical Research ‘‘G. Ronzoni”, Milan, Italy
| | - G. Torri
- Institute for Chemical and Biochemical Research ‘‘G. Ronzoni”, Milan, Italy
| | - C. Page
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, United Kingdom
| | - P. Rigsby
- National Institute for Biological Standards and Control, Blanche Lane, Herts, United Kingdom
| | - B. Mulloy
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, United Kingdom
| | - E. Gray
- National Institute for Biological Standards and Control, Blanche Lane, Herts, United Kingdom
- Sacker Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, United Kingdom
| |
Collapse
|
8
|
Heparin Mimetics: Their Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10040078. [PMID: 28974047 PMCID: PMC5748635 DOI: 10.3390/ph10040078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.
Collapse
|
9
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
10
|
Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14:28-39. [PMID: 26565070 DOI: 10.1111/jth.13194] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The contact activation system (CAS) and kallikrein/kinin system (KKS) are older recognized biochemical pathways that include several proteins that skirt the fringes of the blood coagulation, fibrinolytic, complement and renin-angiotensin fields. These proteins initially were proposed as part of the hemostatic pathways because their deficiencies are associated with prolonged clinical assays. However, the absence of bleeding states with deficiencies of factor XII (FXII), prekallikrein (PK) and high-molecular-weight kininogen indicates that the CAS and KKS do not contribute to hemostasis. Since the discovery of the Hageman factor 60 years ago much has been learned about the biochemistry, cell biology and animal physiology of these proteins. The CAS is a pathophysiologic surface defense mechanism against foreign proteins, organisms and artificial materials. The KKS is an inflammatory response mechanism. Targeting their activation through FXIIa or plasma kallikrein inhibition when blood interacts with the artificial surfaces of modern interventional medicine or in acute attacks of hereditary angioedema restores vascular homeostasis. FXII/FXIIa and products that arise with PK deficiency also offer novel ways to reduce arterial and venous thrombosis without an effect on hemostasis. In summary, there is revived interest in the CAS and KKS due to better understanding of their activities. The new appreciation of these systems will lead to several new therapies for a variety of medical disorders.
Collapse
Affiliation(s)
- A H Schmaier
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
11
|
Lester J, Chandler T, Gemene KL. Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin. Anal Chem 2015; 87:11537-43. [DOI: 10.1021/acs.analchem.5b03347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jacob Lester
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Timothy Chandler
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Kebede L. Gemene
- Department
of Chemistry, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| |
Collapse
|
12
|
Szekely J, Collins M, Currie C. Alternative method for determination of contaminated heparin using chiral recognition. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:1-4. [DOI: 10.1016/j.jchromb.2014.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/16/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
13
|
Sommers CD, Montpas N, Adam A, Keire DA. Characterization of currently marketed heparin products: adverse event relevant bioassays. J Pharm Biomed Anal 2012; 67-68:28-35. [PMID: 22591805 DOI: 10.1016/j.jpba.2012.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
The polyanion oversulfated chondroitin sulfate (OSCS) was identified as a contaminant in heparin products and was associated with severe hypotensive responses and other symptoms in patients receiving the drug. The OSCS associated adverse reactions were attributed to activation of the contact system via the plasma mediator, activated factor XII (FXIIa), which triggers kallikrein (KK) activity. Unlike heparin alone, OSCS, is able to activate FXII in plasma and stably bind to FXIIa enhancing plasma KK activity and the induction of vasoactive mediators such as bradykinin (BK), C3a and C5a. Similarly OSCS can interfere with heparin neutralization by the polycationic drug protamine. Here, we assess heparin (heparin sodium, dalteparin, tinzaparin or enoxaparin)-protamine complex formation and plasma based bioassays of KK, BK and C5a in a 96-well plate format. We establish the normal range of variation in the optimized bioassays across multiple lots from 9 manufacturers. In addition, because other oversulfated (OS) glycosaminoglycans (GAGs) besides OSCS could also serve as possible economically motivated adulterants (EMAs) to heparin, we characterize OS-dermatan sulfate (OSDS), OS-heparan sulfate (OSHS) and their native forms in the same assays. For the protamine test, OS-GAGs could be distinguished from heparin. For the KK assay, OSCS and OSDS were most potent followed by OSHS, and all had similar efficacies. Finally, OSDS had a greater efficacy in the C5a and BK assays followed by OSCS then OSHS. These data established the normal range of response of heparin products in these assays and the alteration in the responses in the presence of possible EMAs.
Collapse
Affiliation(s)
- Cynthia D Sommers
- Division of Pharmaceutical Analysis, CDER, Food and Drug Administration, St Louis, MO 63101, USA
| | | | | | | |
Collapse
|