1
|
Development of antibacterial nanofibrous wound dressing and conceptual reaction mechanism to deactivate the viral protein by Nigella sativa extract. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7804899 DOI: 10.1007/s13596-020-00538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nigella sativa (N. sativa) is extensively used as medicinal plant all over the world. It has the potential properties as the antiviral and antibacterial application. Its seed contain thymoquinone (TQ), thymohydroquinone (THQ), thymol (THY), p-cymene as major and other minor components. TQ and THQ exhibit broad spectrum of antimicrobial properties against the activity of bacteria, viruses, parasites, schistosoma and fungi. This work provides credence to the fabrication of antibacterial nanofibrous membrane by electrospinning machine from N. sativa extract with polyvinyl alcohol (PVA) solution for wound dressing. The morphology of the developed membrane is also characterized using scanning electron microscope. Fourier transform infrared spectroscopy (FTIR) data has been showed that the functional groups of N. sativa are present in the prepared PVA-N. sativa nanofibrous membrane and its antibacterial activity was investigated. The disk diffusion method has been used to evaluate the antibacterial activity of PVA-N. sativa nanofibrous membrane against Staphylococcus aureus (S. aureus) bacteria and the inhibition zone with a value of 10 mm is formed. Considering the inherent properties of N. sativa, a conceptual reaction mechanism has been proposed to deactivate the viral proteins by the action of TQ and THQ.
Collapse
|
2
|
Wu Q, Zhao H, Chen X, Cai Z. Interaction of bisphenol A 3, 4-quinone metabolite with human hemoglobin, human serum albumin and cytochrome c in vitro. CHEMOSPHERE 2019; 220:930-936. [PMID: 33395814 DOI: 10.1016/j.chemosphere.2018.12.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 06/12/2023]
Abstract
Since covalent protein-bisphenol A adducts generated by the interaction of protein nucleophiles with bisphenol A quinone affect the physicochemical properties of proteins in functional foods and biological tissues, it has become a hot topic nowadays. Therefore, we investigated the interaction of several different biomacromolecules such as hemoglobin, human serum albumin and cytochrome c with bisphenol A 3, 4-quinone (BPAQ). The effects of binding on changes in biomolecular structure were determined by various spectroscopic methods. BPAQ effects were investigated by using the UV-Vis spectroscopy and the quenching phenomenon from fluorescence emission. It proved that the formation of bio-complex and their aromatic micro-environment was likely to be disturbed with as well. Changes observed in circular dichroism (CD) spectroscopy confirmed the quantitative loss of the alpha-helical structure. Further studies with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOFMS) and molecular docking indicated combining ratio and binding sites between proteins and BPAQ. The in vitro data of BPAQ-proteins adducts may provide a valuable theoretical basis for the elucidation of the toxicological mechanisms of BPAQ adducts in biological systems and environments.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
3
|
Li Y, Jongberg S, Andersen ML, Davies MJ, Lund MN. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radic Biol Med 2016; 97:148-157. [PMID: 27212016 DOI: 10.1016/j.freeradbiomed.2016.05.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems.
Collapse
Affiliation(s)
- Yuting Li
- School of Food Science and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China.
| | - Sisse Jongberg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
| | - Mogens L Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Derrick JS, Kerr RA, Nam Y, Oh SB, Lee HJ, Earnest KG, Suh N, Peck KL, Ozbil M, Korshavn KJ, Ramamoorthy A, Prabhakar R, Merino EJ, Shearer J, Lee JY, Ruotolo BT, Lim MH. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. J Am Chem Soc 2015; 137:14785-97. [PMID: 26575890 PMCID: PMC4758209 DOI: 10.1021/jacs.5b10043] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.
Collapse
Affiliation(s)
- Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Richard A. Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Younwoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Shin Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaylin G. Earnest
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Nayoung Suh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Kristy L. Peck
- Department of Chemistry, University of Nevada, Reno 89557, United States
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Kyle J. Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Edward J. Merino
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada, Reno 89557, United States
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
5
|
Jongberg S, Lund MN, Otte J. Dissociation and reduction of covalent β-lactoglobulin–quinone adducts by dithiothreitol, tris(2-carboxyethyl)phosphine, or sodium sulfite. Anal Biochem 2015; 478:40-8. [DOI: 10.1016/j.ab.2015.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/27/2015] [Accepted: 02/09/2015] [Indexed: 01/25/2023]
|
6
|
Abstract
SIGNIFICANCE The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to neurodegeneration are associated with either too little or too much apoptosis. RECENT ADVANCES B cell lymphoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP) and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the "apoptosome." This large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and including) formation of the apoptosome are subject to various forms of post-translational modification, including proteolysis, phosphorylation, and in some cases, direct oxidative modification. CRITICAL ISSUES Despite intense investigation of the intrinsic pathway, significant questions remain regarding how cyt c is released from mitochondria, how the apoptosome is formed and regulated, and how caspase-9 is activated within the complex. FUTURE DIRECTIONS Further studies on the biochemistry of MOMP and apoptosome formation are needed to understand the mechanisms that underpin these critical processes, and novel animal models will be necessary in the future to ascertain the importance of the many posttranslational modifications reported for BCL-2 family members and components of the apoptosome.
Collapse
Affiliation(s)
- Chu-Chiao Wu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
7
|
Ibarra Y, Blair NT. Benzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1. Mol Pharmacol 2013; 83:1120-32. [PMID: 23478802 PMCID: PMC3629832 DOI: 10.1124/mol.112.084194] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 01/14/2023] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) nonselective cation channel has a conserved function as a noxious chemical sensor throughout much of Metazoa. Electrophilic chemicals activate both insect and vertebrate TRPA1 via covalent modification of cysteine residues in the amino-terminal region. Although naturally occurring electrophilic plant compounds, such as mustard oil and cinnamaldehyde, are TRPA1 agonists, it is unknown whether arthropod-produced electrophiles activate mammalian TRPA1. We characterized the effects of the electrophilic arthropod defensive compound para-benzoquinone (pBQN) on the human TRPA1 channel. We used whole-cell recordings of human embryonic kidney cells heterologously expressing either wild-type TRPA1 or TRPA1 with three serine-substituted cysteines crucial for electrophile activation (C621S, C641S, C665S). We found that pBQN activates TRPA1 starting at 10 nM and peaking at 300 nM; higher concentrations caused rapid activation followed by a fast decline. Activation by pBQN required reactivity with cysteine residues, but ones that are distinct from those previously reported to be the key targets of electrophiles. The current reduction we found at higher pBQN concentrations was a cysteine-dependent desensitization of TRPA1, and did not require prior activation. The cysteines required for desensitization are not accessible to all electrophiles as iodoacetamide and internally applied 2-(trimethylammonium)ethyl methanesulfonate failed to cause desensitization (despite large activation). Interestingly, following pBQN desensitization, wild-type TRPA1 had dramatically reduced response to the nonelectrophile agonist carvacrol, whereas the triple cysteine mutant TRPA1 retained its full response. Our results suggest that modification of multiple cysteine residues by electrophilic compounds can generate both activation and desensitization of the TRPA1 channel.
Collapse
Affiliation(s)
- Yessenia Ibarra
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Monks TJ, Lau SS. Reactive intermediates: molecular and MS-based approaches to assess the functional significance of chemical-protein adducts. Toxicol Pathol 2012; 41:315-21. [PMID: 23222993 DOI: 10.1177/0192623312467399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biologically reactive intermediates formed as endogenous products of various metabolic processes are considered important factors in a variety of human diseases, including Parkinson's disease and other neurological disorders, diabetes and complications thereof, and other inflammatory-associated diseases. Chemical-induced toxicities are also frequently mediated via the bioactivation of relatively stable organic molecules to reactive electrophilic metabolites. Indeed, chemical-induced toxicities have long been known to be associated with the ability of electrophilic metabolites to react with a variety of targets within the cell, including their covalent adduction to nucleophilic residues in proteins, and nucleotides within DNA. Although we possess considerable knowledge of the various biochemical mechanisms by which chemicals undergo metabolic bioactivation, we understand far less about the processes that couple bioactivation to toxicity. Identifying specific sites within a protein, which are targets for adduction, can provide the initial information necessary to determine whether such adventitious posttranslational modifications significantly alter either protein structure and/or function. To address this problem, we have developed mass spectrometry (MS)-based approaches to identify specific amino acid targets of electrophile adduction (electrophile-binding motifs), coupled with molecular modeling of such adducts, to determine the potential structural and functional consequences. Where appropriate, functional assays are subsequently conducted to assess protein function.
Collapse
Affiliation(s)
- Terrence J Monks
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
9
|
Kim J, Vaughn AR, Cho C, Albu TV, Carver EA. Modifications of ribonuclease A induced by p-benzoquinone. Bioorg Chem 2011; 40:92-98. [PMID: 22138305 DOI: 10.1016/j.bioorg.2011.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/10/2011] [Accepted: 11/12/2011] [Indexed: 10/15/2022]
Abstract
The nature of ribonuclease A (RNase) modifications induced by p-benzoquinone (pBQ) was investigated using several analysis methods. SDS-PAGE experiments revealed that pBQ was efficient in producing oligomers and polymeric aggregates when RNase was incubated with pBQ. The fluorescence behavior and anisotropy changes of the modified RNase were monitored for a series of incubation reactions where RNase (0.050 mM) was incubated with pBQ (0.050, 0.25, 0.50, 1.50 mM) at 37 °C in phosphate buffer (pH 7.0, 50 mM). The modified RNase exhibited less intense fluorescence and slightly higher anisotropy than the unmodified RNase. UV-Vis spectroscopy indicated that pBQ formed covalent bonds to the modified RNase. Confocal imaging analysis confirmed the formation of the polymeric RNase aggregates with different sizes upon exposure of RNase to high concentrations of pBQ. The interaction between the modified RNase and salts affecting biomineralization of salts was also investigated by scanning electron microscopy. Overall, our results show that pBQ can induce formation of both RNase adducts and aggregates thus providing a better understanding of its biological activity.
Collapse
Affiliation(s)
- Jisook Kim
- Department of Chemistry, Box 2252, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States.
| | - Albert R Vaughn
- Department of Chemistry, Box 2252, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States
| | - Chris Cho
- Department of Chemistry, Box 2252, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States
| | - Titus V Albu
- Department of Chemistry, Box 5055, Tennessee Technological University, Cookeville, TN 38505, United States
| | - Ethan A Carver
- Department of Biological and Environmental Sciences, Box 2653, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States
| |
Collapse
|