1
|
Wang J, Zhao J, Meng Z, Guo R, Yang R, Liu C, Gao J, Xie Y, Jiao X, Fang H, Zhao J, Wang Y, Cao J. ATP protects anti-PD-1/radiation-induced cardiac dysfunction by inhibiting anti-PD-1 exacerbated cardiomyocyte apoptosis, and improving autophagic flux. Heliyon 2023; 9:e20660. [PMID: 37842574 PMCID: PMC10570000 DOI: 10.1016/j.heliyon.2023.e20660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
The synergy between radiotherapy and immunotherapy in treating thoracic cancers presents a potent therapeutic advantage, yet it also carries potential risks. The extent and nature of cumulative cardiac toxicity remain uncertain, prompting the need to discern its mechanisms and devise effective mitigation strategies. Radiation alone or in combination with an anti- Programmed cell death protein1 (PD-1) antibody significantly reduced cardiac function in C57BL/6J mice, and this pathologic effect was aggravated by anti-PD-1 (anti-PD-1 + radiation). To examine the cellular mechanism that causes the detrimental effect of anti-PD-1 upon cardiac function after radiation, AC16 human cardiomyocytes were used to study cardiac apoptosis and cardiac autophagy. Radiation-induced cardiomyocyte apoptosis was significantly promoted by anti-PD-1 treatment, while anti-PD-1 combined radiation administration blocked the cardiac autophagic flux. Adenosine 5'-triphosphate (ATP) (a molecule that promotes lysosomal acidification) not only improved autophagic flux in AC16 human cardiomyocytes, but also attenuated apoptosis induced by radiation and anti-PD-1 treatment. Finally, ATP administration in vivo significantly reduced radiation-induced and anti-PD-1-exacerbated cardiac dysfunction. We demonstrated for the first time that anti-PD-1 can aggravate radiation-induced cardiac dysfunction via promoting cardiomyocyte apoptosis without affecting radiation-arrested autophagic flux. ATP enhanced cardiomyocyte autophagic flux and inhibited apoptosis, improving cardiac function in anti-PD-1/radiation combination-treated animals.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jing Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhijun Meng
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ruihong Yang
- Department of Thoracic Radiotherapy, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Caihong Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jia Gao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yaoli Xie
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiangying Jiao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Heping Fang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Jimin Cao
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
2
|
AlMatrouk A, Lemons K, Ogura T, Lin W. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021; 11:2621-2644. [PMID: 34661289 DOI: 10.1002/cphy.c210007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic cigarettes (e-cigs) are used by millions of adolescents and adults worldwide. Commercial e-liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e-cig users. The flavorants in e-liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e-cigs. The vast majority of flavorants in e-liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e-cig aerosol contains a variety of by-products generated through heating the e-liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e-cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e-cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e-cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621-2644, 2021.
Collapse
Affiliation(s)
- Abdullah AlMatrouk
- General Department of Criminal Evidence, Forensic Laboratories, Ministry of Interior, Farwaniyah, Kuwait.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kayla Lemons
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Jia C, Oliver J, Gilmer D, Lovins C, Rodriguez-Gil DJ, Hagg T. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res 2020; 49:102061. [PMID: 33130470 PMCID: PMC7903807 DOI: 10.1016/j.scr.2020.102061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Constant neuroregeneration in adult olfactory epithelium maintains olfactory function by basal stem cell proliferation and differentiation to replace lost olfactory sensory neurons (OSNs). Understanding the mechanisms regulating this process could reveal potential therapeutic targets for stimulating adult olfactory neurogenesis under pathological conditions and aging. Ciliary neurotrophic factor (CNTF) in astrocytes promotes forebrain neurogenesis but its function in the olfactory system is unknown. Here, we show in mouse olfactory epithelium that CNTF is expressed in horizontal basal cells, olfactory ensheathing cells (OECs) and a small subpopulation of OSNs. CNTF receptor alpha was expressed in Mash1-positive globose basal cells (GBCs) and OECs. Thus, CNTF may affect GBCs in a paracrine manner. CNTF−/− mice did not display altered GBC proliferation or olfactory function, suggesting that CNTF is not involved in basal olfactory renewal or that they developed compensatory mechanisms. Therefore, we tested the effect of increased CNTF in wild type mice. Intranasal instillation of a focal adhesion kinase (FAK) inhibitor, FAK14, upregulated CNTF expression. FAK14 also promoted GBC proliferation, neuronal differentiation and basal stem cell self-renewal but had no effective in CNTF−/− mice, suggesting that FAK inhibition promotes olfactory neuroregeneration through CNTF, making them potential targets to treat sensorineural anosmia due to OSN loss.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| | - Joe Oliver
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Dustin Gilmer
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Diego J Rodriguez-Gil
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| |
Collapse
|
4
|
Lemons K, Fu Z, Ogura T, Lin W. TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience 2020; 434:171-190. [PMID: 32224228 DOI: 10.1016/j.neuroscience.2020.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
The mammalian main olfactory epithelium (MOE) is exposed to a wide spectrum of external chemicals during respiration and relies on adaptive plasticity to maintain its structural and functional integrity. We previously reported that the chemo-responsive and cholinergic transient receptor potential channel M5 (TRPM5)-expressing-microvillous cells (MCs) in the MOE are required for maintaining odor-evoked electrophysiological responses and olfactory-guided behavior during two-week exposure to an inhaled chemical mixture. Here, we investigated the underlying factors by assessing the potential modulatory effects of TRPM5-MCs on MOE morphology and cell proliferation and apoptosis, which are important for MOE maintenance. In the posterior MOE of TRPM5-GFP mice, we found that two-week chemical exposure induced a significant increase in Ki67-expressing proliferating basal stem cells without a significant reduction in the thickness of the whole epithelium or mature olfactory sensory neuron (OSN) layer. This adaptive increase in stem cell proliferation was missing in chemical-exposed transcription factor Skn-1a knockout (Skn-1a-/-) mice lacking TRPM5-MCs. In addition, a greater number of isolated OSNs from chemical-exposed Skn-1a-/- mice displayed unhealthily high levels of resting intracellular Ca2+. Intriguingly, in the anterior MOE where we found a higher density of TRPM5-MCs, chemical-exposed TRPM5-GFP mice exhibited a time-dependent increase in apoptosis and a loss of mature OSNs without a significant increase in proliferation or neurogenesis to compensate for OSN loss. Together, our data suggest that TRPM5-MC-dependent region-specific upregulation of cell proliferation in the majority of the MOE during chemical exposure contributes to the adaptive maintenance of OSNs and olfactory function.
Collapse
Affiliation(s)
- Kayla Lemons
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ziying Fu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
5
|
Bryche B, Dewaele A, Saint-Albin A, Le Poupon Schlegel C, Congar P, Meunier N. IL-17c is involved in olfactory mucosa responses to Poly(I:C) mimicking virus presence. Brain Behav Immun 2019; 79:274-283. [PMID: 30776474 DOI: 10.1016/j.bbi.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023] Open
Abstract
At the interface of the environment and the nervous system, the olfactory mucosa (OM) is a privileged pathway for environmental toxicants and pathogens towards the central nervous system. The OM is known to produce antimicrobial and immunological components but the mechanisms of action of the immune system on the OM remain poorly explored. IL-17c is a potent mediator of respiratory epithelial innate immune responses, whose receptors are highly expressed in the OM of mice. We first characterized the presence of the IL-17c and its receptors in the OM. While IL-17c was weakly expressed in the control condition, it was strongly expressed in vivo after intranasal administration of polyinosinic-polycytidylic (Poly I:C), a Toll Like Receptor 3 agonist, mimicking a viral infection. Using calcium imaging and electrophysiological recordings, we found that IL-17c can effectively activate OM cells through the release of ATP. In the longer term, intranasal chronic instillations of IL-17c increased the cellular dynamics of the epithelium and promoted immune cells infiltrations. Finally, IL-17c decreased cell death induced by Poly(I:C) in an OM primary culture. The OM is thus a tissue highly responsive to immune mediators, proving its central role as a barrier against airway pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Patrice Congar
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Meunier
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France; Université de Versailles Saint-Quentin en Yvelines, 78000 Versailles, France.
| |
Collapse
|
6
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
7
|
Comparison of Anorectic Potencies of the Trichothecenes T-2 Toxin, HT-2 Toxin and Satratoxin G to the Ipecac Alkaloid Emetine. Toxicol Rep 2015; 2:238-251. [PMID: 25932382 PMCID: PMC4410735 DOI: 10.1016/j.toxrep.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anorectic effects of natural toxins were compared in the mouse. Parenteral and oral T-2 and HT-2 toxin exposure caused prolonged anorexia. Emetine was more potent when delivered orally as compared to parenterally. Emetine's effects were less than T-2 and HT-2 toxin and more transient. Parental and intranasal delivery satratoxin G caused transient anorectic effects.
Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g., satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.
Collapse
|
8
|
Jia C, Hegg CC. Effect of IP3R3 and NPY on age-related declines in olfactory stem cell proliferation. Neurobiol Aging 2014; 36:1045-56. [PMID: 25482245 DOI: 10.1016/j.neurobiolaging.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3(+) and NPY(+) microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24 months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Colleen C Hegg
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Kurtenbach S, Whyte-Fagundes P, Gelis L, Kurtenbach S, Brazil E, Zoidl C, Hatt H, Shestopalov VI, Zoidl G. Investigation of olfactory function in a Panx1 knock out mouse model. Front Cell Neurosci 2014; 8:266. [PMID: 25309319 PMCID: PMC4162419 DOI: 10.3389/fncel.2014.00266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023] Open
Abstract
Pannexin 1 (Panx1), the most extensively investigated member of a channel-forming protein family, is able to form pores conducting molecules up to 1.5 kDa, like ATP, upon activation. In the olfactory epithelium (OE), ATP modulates olfactory responsiveness and plays a role in proliferation and differentiation of olfactory sensory neurons (OSNs). This process continuously takes place in the OE, as neurons are replaced throughout the whole lifespan. The recent discovery of Panx1 expression in the OE raises the question whether Panx1 mediates ATP release responsible for modulating chemosensory function. In this study, we analyzed pannexin expression in the OE and a possible role of Panx1 in olfactory function using a Panx1−/− mouse line with a global ablation of Panx1. This mouse model has been previously used to investigate Panx1 functions in the retina and adult hippocampus. Here, qPCR, in-situ hybridization, and immunohistochemistry (IHC) demonstrated that Panx1 is expressed in axon bundles deriving from sensory neurons of the OE. The localization, distribution, and expression of major olfactory signal transduction proteins were not significantly altered in Panx1−/− mice. Further, functional analysis of Panx1−/− animals does not reveal any major impairment in odor perception, indicated by electroolfactogram (EOG) measurements and behavioral testing. However, ATP release evoked by potassium gluconate application was reduced in Panx1−/− mice. This result is consistent with previous reports on ATP release in isolated erythrocytes and spinal or lumbar cord preparations from Panx1−/− mice, suggesting that Panx1 is one of several alternative pathways to release ATP in the olfactory system.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Paige Whyte-Fagundes
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Lian Gelis
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Sarah Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Emerson Brazil
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Christiane Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami Miami, FL, USA ; Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Russia
| | - Georg Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| |
Collapse
|
10
|
Wang J, Zhu S, Wang H, He J, Zhang Y, Adilijiang A, Zhang H, Hartle K, Guo H, Kong J, Huang Q, Li XM. Astrocyte-dependent protective effect of quetiapine on GABAergic neuron is associated with the prevention of anxiety-like behaviors in aging mice after long-term treatment. J Neurochem 2014; 130:780-9. [PMID: 24862291 DOI: 10.1111/jnc.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/26/2014] [Accepted: 05/22/2014] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that quetiapine (QTP) may have neuroprotective properties; however, the underlying mechanisms have not been fully elucidated. In this study, we identified a novel mechanism by which QTP increased the synthesis of ATP in astrocytes and protected GABAergic neurons from aging-induced death. In 12-month-old mice, QTP significantly improved cell number of GABAegic neurons in the cortex and ameliorated anxiety-like behaviors compared to control group. Complimentary in vitro studies showed that QTP had no direct effect on the survival of aging GABAergic neurons in culture. Astrocyte-conditioned medium (ACM) pretreated with QTP (ACMQTP) for 24 h effectively protected GABAergic neurons against aging-induced spontaneous cell death. It was also found that QTP boosted the synthesis of ATP from cultured astrocytes after 24 h of treatment, which might be responsible for the protective effects on neurons. Consistent with the above findings, a Rhodamine 123 test showed that ACMQTP, not QTP itself, was able to prevent the decrease in mitochondrial membrane potential in the aging neurons. For the first time, our study has provided evidence that astrocytes may be the conduit through which QTP is able to exert its neuroprotective effects on GABAergic neurons. The neuroprotective properties of quetiapine (QTP) have not been fully understood. Here, we identify a novel mechanism by which QTP increases the synthesis of ATP in astrocytes and protects GABAergic neurons from aging-induced death in a primary cell culture model. In 12-month-old mice, QTP significantly improves cell number of GABAegic neurons and ameliorates anxiety-like behaviors. Our study indicates that astrocytes may be the conduit through which QTP exerts its neuroprotective effects on GABAergic neurons.
Collapse
Affiliation(s)
- Junhui Wang
- Mental Health Center, Shantou University, Shantou, Guangdong, China; Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu Y, Zhang C. Purinergic signaling negatively regulates activity of an olfactory receptor in an odorant-dependent manner. Neuroscience 2014; 275:89-101. [PMID: 24928349 DOI: 10.1016/j.neuroscience.2014.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/08/2014] [Accepted: 05/28/2014] [Indexed: 01/06/2023]
Abstract
Extracellular purines and pyrimidines are important signaling molecules that mediate diverse biological functions via cell surface purinergic receptors. Although purinergic modulation to olfactory activity has been reported, cell-specific expression and action of purinergic receptors deserve further exploration. We physiologically characterized expression of purinergic receptors in a set of olfactory sensory neurons that are responsive to both acetophenone and benzaldehyde (AB-OSNs). Sparsely distributed in the most ventral olfactory receptor zone, AB-OSNs were activated by P2 purinergic receptor agonists but not by P1 purinergic receptor agonist adenosine. Both P2X-selective agonist α,β-methylene ATP and P2Y-selective agonist uridine 5'-triphosphate (UTP) were stimulatory to AB-OSNs, indicating expression of both P2X and P2Y purinergic receptors in AB-OSNs. Pharmacological characterization of receptor specificity using various P2X and P2Y agonists and antagonists illustrated that P2X1 and P2Y2 receptors played major roles in purinergic signaling in AB-OSNs. Interestingly, the results of purinergic modulation to acetophenone-evoked responses were different from those to benzaldehyde-evoked responses within the same neurons. Activation of P2X1 receptors had more profound inhibitory effects on benzaldehyde-evoked intracellular calcium elevation than on acetophenone-evoked responses within the same neurons, and the reverse was true when P2Y2 receptors were activated. Cross-adaptation data showed that acetophenone and benzaldehyde bound to the same olfactory receptor. Thus, our study has demonstrated that purinergic signaling of P2X and P2Y receptors has different effects on olfactory transduction mediated by a defined olfactory receptor and the consequences of purinergic modulation of olfactory activity might depend on stereotypic structures of the odorant-receptor complex.
Collapse
Affiliation(s)
- Y Yu
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn Street, Chicago, IL 60616, USA
| | - C Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101S Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
12
|
An IP3R3- and NPY-expressing microvillous cell mediates tissue homeostasis and regeneration in the mouse olfactory epithelium. PLoS One 2013; 8:e58668. [PMID: 23516531 PMCID: PMC3596314 DOI: 10.1371/journal.pone.0058668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent release of neurotrophic factors plays an important role in the maintenance of neurons, yet the release mechanisms are understudied. The inositol triphosphate (IP3) receptor is a calcium release channel that has a physiological role in cell growth, development, sensory perception, neuronal signaling and secretion. In the olfactory system, the IP3 receptor subtype 3 (IP3R3) is expressed exclusively in a microvillous cell subtype that is the predominant cell expressing neurotrophic factor neuropeptide Y (NPY). We hypothesized that IP3R3-expressing microvillous cells secrete sufficient NPY needed for both the continual maintenance of the neuronal population and for neuroregeneration following injury. We addressed this question by assessing the release of NPY and the regenerative capabilities of wild type, IP3R3(+/-), and IP3R3(-/-) mice. Injury, simulated using extracellular ATP, induced IP3 receptor-mediated NPY release in wild-type mice. ATP-evoked NPY release was impaired in IP3R3(-/-) mice, suggesting that IP3R3 contributes to NPY release following injury. Under normal physiological conditions, both IP3R3(-/-) mice and explants from these mice had fewer progenitor cells that proliferate and differentiate into immature neurons. Although the number of mature neurons and the in vivo rate of proliferation were not altered, the proliferative response to the olfactotoxicant satratoxin G and olfactory bulb ablation injury was compromised in the olfactory epithelium of IP3R3(-/-) mice. The reductions in both NPY release and number of progenitor cells in IP3R3(-/-) mice point to a role of the IP3R3 in tissue homeostasis and neuroregeneration. Collectively, these data suggest that IP3R3 expressing microvillous cells are actively responsive to injury and promote recovery.
Collapse
|
13
|
Lucero MT. Peripheral modulation of smell: fact or fiction? Semin Cell Dev Biol 2012; 24:58-70. [PMID: 22986099 DOI: 10.1016/j.semcdb.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
Abstract
Despite studies dating back 30 or more years showing modulation of odorant responses at the level of the olfactory epithelium, most descriptions of the olfactory system infer that odorant signals make their way from detection by cilia on olfactory sensory neurons to the olfactory bulb unaltered. Recent identification of multiple subtypes of microvillar cells and identification of neuropeptide and neurotransmitter expression in the olfactory mucosa add to the growing body of literature for peripheral modulation in the sense of smell. Complex mechanisms including perireceptor events, modulation of sniff rates, and changes in the properties of sensory neurons match the sensitivity of olfactory sensory neurons to the external odorant environment, internal nutritional status, reproductive status, and levels of arousal or stress. By furthering our understanding of the players mediating peripheral olfaction, we may open the door to novel approaches for modulating the sense of smell in both health and disease.
Collapse
Affiliation(s)
- Mary T Lucero
- Department of Physiology, School of Medicine, University of Utah, 420 Chipeta Way Ste, 1700 Salt Lake City, UT 84108, USA.
| |
Collapse
|
14
|
Hayoz S, Jia C, Hegg C. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium. BMC Neurosci 2012; 13:53. [PMID: 22640172 PMCID: PMC3444318 DOI: 10.1186/1471-2202-13-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s) by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP) and a G protein-coupled P2Y receptor agonist (UTP). Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP release following injury could lead to progenitor cell proliferation, differentiation and regeneration. Thus, understanding mechanisms of ATP release is of paramount importance to improve our knowledge about tissue homeostasis and post-injury neuroregeneration. It will lead to development of treatments to restore loss of smell and, when transposed to the central nervous system, improve recovery following central nervous system injury.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
15
|
Carey SA, Plopper CG, Hyde DM, Islam Z, Pestka JJ, Harkema JR. Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys. Toxicol Pathol 2012; 40:887-98. [PMID: 22552393 DOI: 10.1177/0192623312444028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Satratoxin-G (SG) is a trichothecene mycotoxin of Stachybotrys chartarum, the black mold suggested to contribute etiologically to illnesses associated with water-damaged buildings. We have reported that intranasal exposure to SG evokes apoptosis of olfactory sensory neurons (OSNs) and acute inflammation in the nose and brain of laboratory mice. To further assess the potential human risk of nasal airway injury and neurotoxicity, we developed a model of SG exposure in monkeys, whose nasal airways more closely resemble those of humans. Adult, male rhesus macaques received a single intranasal instillation of 20 µg SG (high dose, n = 3), or 5 µg SG daily for four days (repeated low dose, n = 3) in one nasal passage, and saline vehicle in the contralateral nasal passage. Nasal tissues were examined using light and electron microscopy and morphometric analysis. SG induced acute rhinitis, atrophy of the olfactory epithelium (OE), and apoptosis of OSNs in both groups. High-dose and repeated low-dose SG elicited a 13% and 66% reduction in OSN volume density, and a 14-fold and 24-fold increase in apoptotic cells of the OE, respectively. This model provides new insight into the potential risk of nasal airway injury and neurotoxicity caused by exposure to water-damaged buildings.
Collapse
Affiliation(s)
- Stephan A Carey
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Neuropeptide Y and extracellular signal-regulated kinase mediate injury-induced neuroregeneration in mouse olfactory epithelium. Mol Cell Neurosci 2011; 49:158-70. [PMID: 22154958 DOI: 10.1016/j.mcn.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/02/2011] [Accepted: 11/17/2011] [Indexed: 12/29/2022] Open
Abstract
In the olfactory epithelium (OE), injury induces ATP release, and subsequent activation of P2 purinergic receptors by ATP promotes neuroregeneration by increasing basal progenitor cell proliferation. The molecular mechanisms underlying ATP-induced increases in OE neuroregeneration have not been established. In the present study, the roles of neuroproliferative factors neuropeptide Y (NPY) and fibroblast growth factor 2 (FGF2), and p44/42 extracellular signal-regulated kinase (ERK) on ATP-mediated increases of neuroregeneration in the OE were investigated. ATP increased basal progenitor cell proliferation in the OE via activation of P2 purinergic receptors in vitro and in vivo as monitored by incorporation of 5'-ethynyl-2'-deoxyuridine, a thymidine analog, into DNA, and proliferating cell nuclear antigen (PCNA) protein levels. ATP induced p44/42 ERK activation in globose basal cells (GBCs) but not horizontal basal cells (HBCs). ATP differentially regulated p44/42 ERK over time in the OE both in vitro and in vivo with transient inhibition (5-15 min) followed by activation (30 min-1 h) of p44/42 ERK. In addition, ATP indirectly activated p44/42 ERK in the OE via ATP-induced NPY release and subsequent activation of NPY Y1 receptors in the basal cells. There were no synergistic effects of ATP and NPY or FGF2 on OE neuroregeneration. These data clearly have implications for the pharmacological modulation of neuroregeneration in the olfactory epithelium.
Collapse
|