1
|
Tseng YJ, Lu FI, Wu SM. Generational effects and abnormalities in craniofacial chondrogenesis in zebrafish (Danio rerio) embryos upon maternal exposure to estrogen endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109743. [PMID: 37689172 DOI: 10.1016/j.cbpc.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Bisphenol A (BPA) and diethyl phthalate (DEP) are estrogenic endocrine disrupting chemicals (EEDCs). The present study reconfirmed that the angle of the ceratohyal cartilage (CH) in embryos were larger from maternal BPA and E2, but smaller from DEP compared to the control. However, it is still unknown whether both the BPA and DEP chemicals disrupted the action of E2 and thereby influence the estrogen signaling pathways. Additionally, it remains unclear whether they also disrupted certain related genes in the migratory pathways of neural crest cells (NCCs) in their offspring. The present data showed that nuclear estrogen receptors and membrane estrogen receptors have different disrupted profiles among female zebrafish exposed to BPA (F-BPA), and DEP (F-DEP), and external E2 (F-E2). However, certain related genes in the migratory pathways of NCCs in embryos from F-BPA and F-E2 such as the sox10, chm1, and tgfbr1a mRNA expressions showed a positive relationship compared with CH angles; the gene expressions of sox9a, smad3, and col2a1a and the CH angles of embryos exhibited an opposite relationship upon F-DEP treatments. Thus, we suggested that the genes involved in NCCs migration were potentially induced by the residual maternal DEP contents. Two sets of genes, chm1/tgfb3 and chm1/gper1, exhibited an identical profile in the ovary and its offspring at 2 h of post fertilization upon F-E2 and F-BPA treatments, respectively. We suggested that the maternal mRNA from female to embryos were transferred before the maternal-to-zygotic transition stage.
Collapse
Affiliation(s)
- Yu-Jen Tseng
- Department of Aquatic Biosciences, National Chiayi University, Taiwan; College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fu-I Lu
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Su Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, Taiwan.
| |
Collapse
|
2
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
3
|
Anderson JC, Beyger L, Guchardi J, Holdway DA. The Effects of 17α-Ethinylestradiol on the Heart Rate of Embryonic Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:904-912. [PMID: 32072671 DOI: 10.1002/etc.4691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Estrogen toxicity has been an area of priority in aquatic toxicology over the last 20 yr. Currently, estrogen toxicity is primarily linked to classical estrogen signaling, the interaction of estrogen receptors alpha and beta (ERα and ERβ). Recent evidence has indicated that a rapid, nongenomic, nonclassical estrogen signaling pathway exists via the G protein-coupled estrogen receptor (GPER), which is expressed in many biological systems, with roles in the cardiovascular system. The objective of the present study was to investigate the effect of 17α-ethinylestradiol (EE2) on the heart rate of embryonic Japanese medaka (Oryzias latipes). A significant decrease (bradycardia) in embryonic heart rate was observed at all treatment concentrations (0.1, 1, 10, 100, and 1000 ng/L EE2) at 144, 168, and 192 h postfertilization (hpf; p ≤ 0.05), whereas 120 and 216 hpf embryos experienced a significant decrease from the control at 10, 100, and 1000 ng/L EE2 and 0.1, 100, and 1000 ng/L EE2, respectively (p ≤ 0.05). In addition, using select estrogen receptor modulators, it was demonstrated that estrogen-induced bradycardia appears to be linked to GPER and not ERα and ERβ. The present study highlights GPER as a novel and alternative mode of action for EE2 toxicity at environmentally relevant concentrations. Environ Toxicol Chem 2020;39:904-912. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Lindsay Beyger
- Faculty of Science, Ontario Tech University, Oshawa Ontario, Canada
| | - John Guchardi
- Faculty of Science, Ontario Tech University, Oshawa Ontario, Canada
| | | |
Collapse
|
4
|
Mesnage R, Oestreicher N, Poirier F, Nicolas V, Boursier C, Vélot C. Transcriptome profiling of the fungus Aspergillus nidulans exposed to a commercial glyphosate-based herbicide under conditions of apparent herbicide tolerance. ENVIRONMENTAL RESEARCH 2020; 182:109116. [PMID: 32069763 DOI: 10.1016/j.envres.2020.109116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Glyphosate-based herbicides, such as Roundup®, are the most widely used non-selective, broad-spectrum herbicides. The release of these compounds in large amounts into the environment is susceptible to affect soil quality and health, especially because of the non-target effects on a large range of organisms including soil microorganisms. The soil filamentous fungus Aspergillus nidulans, a well-characterized experimental model organism that can be used as a bio-indicator for agricultural soil health, has been previously shown to be highly affected by Roundup GT Plus (R450: 450 g/L of glyphosate) at concentrations far below recommended agricultural application rate, including at a dose that does not cause any macroscopic effect. In this study, we determined alterations in the transcriptome of A. nidulans when exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters. A total of 1816 distinct genes had their expression altered. The most affected biological functions were protein synthesis, amino acids and secondary metabolisms, stress response, as well as detoxification pathways through cytochromes P450, glutathione-S-transferases, and ABC transporters. These results partly explain the molecular mechanisms underlying alterations in growth parameters detected at higher concentrations for this ascomycete fungus. In conclusion, our results highlight molecular disturbances in a soil fungus under conditions of apparent tolerance to the herbicide, and thus confirm the need to question the principle of "substantial equivalence" when applied to plants made tolerant to herbicides.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom; CRIIGEN, 42 Rue de Lisbonne, 75008, Paris, France.
| | - Nathalie Oestreicher
- Equipe VEAC, Université Paris-Sud, Faculté des Sciences, Bât. 350, Avenue Jean Perrin, 91405, Orsay, France; Pôle Risques MRSH-CNRS, EA2608, Université de Caen, Esplanade de la Paix, 14032, Caen, France.
| | - Florence Poirier
- Université Paris 13, UFR SMBH, Plateforme PPUP13, 1 Rue de Chablis, 93017, Bobigny Cedex, France.
| | - Valérie Nicolas
- UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateformes Trans-Prot et d'Imagerie Cellulaire, Université Paris-Sud, Faculté de Pharmacie, Tour E1, 5 Rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France.
| | - Céline Boursier
- UMS-IPSIT, US31 Inserm-UMS3679 CNRS, Plateformes Trans-Prot et d'Imagerie Cellulaire, Université Paris-Sud, Faculté de Pharmacie, Tour E1, 5 Rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France.
| | - Christian Vélot
- CRIIGEN, 42 Rue de Lisbonne, 75008, Paris, France; Equipe VEAC, Université Paris-Sud, Faculté des Sciences, Bât. 350, Avenue Jean Perrin, 91405, Orsay, France; Pôle Risques MRSH-CNRS, EA2608, Université de Caen, Esplanade de la Paix, 14032, Caen, France.
| |
Collapse
|
5
|
Chaturantabut S, Shwartz A, Evason KJ, Cox AG, Labella K, Schepers AG, Yang S, Aravena M, Houvras Y, Mancio-Silva L, Romano S, Gorelick DA, Cohen DE, Zon LI, Bhatia SN, North TE, Goessling W. Estrogen Activation of G-Protein-Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of Human Hepatocytes. Gastroenterology 2019; 156:1788-1804.e13. [PMID: 30641053 PMCID: PMC6532055 DOI: 10.1053/j.gastro.2019.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS Exposure to 17β-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING The accession number in the Gene Expression Omnibus is GSE92544.
Collapse
Affiliation(s)
- Saireudee Chaturantabut
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kyle Labella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Marianna Aravena
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, New York, New York
| | - Liliana Mancio-Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shannon Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A. Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Leonard I. Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Howard Hughes Medical Institute, Chevy Chase, Maryland;,Harvard Stem Cell Institute, Cambridge, Massachusetts;,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts;,Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts;,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Trista E. North
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Divison of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
6
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
Zhu D, Yang L, Huang J, Zhou F, Yang Q, Jiang S, Jiang S. The comprehensive expression analysis of the G protein-coupled receptor from Penaeus monodon indicating it participates in innate immunity and anti-ammonia nitrogen stress. FISH & SHELLFISH IMMUNOLOGY 2018; 75:17-26. [PMID: 29410275 DOI: 10.1016/j.fsi.2018.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
The G protein-coupled receptors (GPCRs) composed a superfamily that played an important role in physiological processes of crustaceans, with multiple functions such as growth and development, acting as a defense against stimulations from external factors. In this paper, one kind of GPCRs were identified from Penaeus monodon, called PmGPCR, included an open reading frame (ORF) of 1113 bp. Bioinformatic analysis showed that PmGPCR protein had the typical structure of seven transmembrane domains (7TM), especially the special Asp-Arg-Try motif (DRY motif) between the third transmembrane structures (TM3) and the second intracellular loops (IL-2) which can prove that PmGPCR belongs to the rhodopsin-like family. The analyses of phylogenetic tree indicated that the amino acid sequence of PmGPCR should be merged into Procambarus clarkiic with high identity (98%). Quantitative real-time PCR (q RT-PCR) revealed that PmGPCR mRNA was highly expressed in hepatopancreas, abdominal ganglia and lymph, in which it was significantly higher than that of other tissues (P < 0.05). In addition, the expression of PmGPCR was analyzed during three days post-stimulation with the gram-positive/negative bacteria, the mRNA expression level increased after challenged with gram - positive bacteria in hepatopancreas, lymph and intestines. During the development stages, PmGPCR showed significantly higher expression in nauplius, zoea III, mysis III and post larvae stages than that in other development stages. Meanwhile, the highest transcripts expression of PmGPCR in abdominal ganglia, hepatopancreas, lymph and intestines respectively appeared at D0, D1, D2 and D3/D4 stages of molting. High or low concentration of ammonia nitrogen up-regulated the expression level of PmGPCR at the initial stage in hepatopancreas and gill, and then down-regulated at 48 h. These results indicated PmGPCR may mediate the pathways that involved in growth and development process, survival in the adversity, in addition, provided the useful data to research GPCR-mediated physiological and biological process and explain the mechanisms to defense pathogens and anti-stress in shrimp.
Collapse
Affiliation(s)
- Dandan Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|
8
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
9
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
10
|
Romano SN, Edwards HE, Souder JP, Ryan KJ, Cui X, Gorelick DA. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genet 2017; 13:e1007069. [PMID: 29065151 PMCID: PMC5669493 DOI: 10.1371/journal.pgen.1007069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 10/11/2017] [Indexed: 01/31/2023] Open
Abstract
Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. Estrogen hormones are important for the formation and function of the nervous, reproductive and cardiovascular systems. Here we report that acute exposure to estrogens increases heart rate, a previously unappreciated function of estrogens. Using zebrafish with mutations in genes that respond to estrogens, we found that heart rate is regulated not by the typical molecules that respond to estrogens–the nuclear estrogen receptors–but rather by a different molecule, the G protein-coupled estrogen receptor. We also show that estrogens increase heart rate by increasing levels of thyroid hormone. Our results reveal a new function for the G protein-coupled estrogen receptor and a new connection between estrogens and thyroid hormone. Environmental compounds that mimic estrogens can be harmful because they can influence gonad function. Our results suggest that endocrine disrupting compounds may also influence cardiac function.
Collapse
Affiliation(s)
- Shannon N. Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hailey E. Edwards
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaclyn Paige Souder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin J. Ryan
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
11
|
Diamante G, Menjivar-Cervantes N, Leung MS, Volz DC, Schlenk D. Contribution of G protein-coupled estrogen receptor 1 (GPER) to 17β-estradiol-induced developmental toxicity in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:180-187. [PMID: 28284154 DOI: 10.1016/j.aquatox.2017.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Exposure to 17β-estradiol (E2) influences the regulation of multiple signaling pathways, and E2-mediated disruption of signaling events during early development can lead to malformations such as cardiac defects. In this study, we investigated the potential role of the G-protein estrogen receptor 1 (GPER) in E2-induced developmental toxicity. Zebrafish embryos were exposed to E2 from 2h post fertilization (hpf) to 76 hpf with subsequent transcriptional measurements of heart and neural crest derivatives expressed 2 (hand2), leucine rich repeat containing 10 (lrrc10), and gper at 12, 28 and 76 hpf. Alteration in the expression of lrrc10, hand2 and gper was observed at 12 hpf and 76 hpf, but not at 28 hpf. Expression of these genes was also altered after exposure to G1 (a GPER agonist) at 76 hpf. Expression of lrrc10, hand2 and gper all coincided with the formation of cardiac edema at 76 hpf as well as other developmental abnormalities. While co-exposure of G1 with G36 (a GPER antagonist) rescued G1-induced abnormalities and altered gene expression, co-exposure of E2 with G36, or ICI 182,780 (an estrogen receptor antagonist) did not rescue E2-induced cardiac deformities or gene expression. In addition, no effects on the concentrations of downstream ER and GPER signaling molecules (cAMP or calcium) were observed in embryo homogenates after E2 treatment. These data suggest that the impacts of E2 on embryonic development at this stage are complex and may involve multiple receptor and/or signaling pathways.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States.
| | - Norma Menjivar-Cervantes
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - Man Sin Leung
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States.
| |
Collapse
|
12
|
Bugel SM, Bonventre JA, Tanguay RL. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci 2016; 154:55-68. [PMID: 27492224 DOI: 10.1093/toxsci/kfw139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay-an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1-50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization.
Collapse
Affiliation(s)
- Sean M Bugel
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Robert L Tanguay
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| |
Collapse
|
13
|
Peng C, Luo X, Xing Q, Sun H, Huang X. Suberoylanilide Hydroxamic Acid Restores Estrogen Reduced-cTnI Expression in Neonatal Hearts of Mice. J Cell Biochem 2016; 117:2377-84. [PMID: 27379430 DOI: 10.1002/jcb.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/04/2016] [Indexed: 01/30/2023]
Abstract
Diastolic cardiac dysfunction can be caused by abnormality in cTnI expression during cardiogenesis. In this study, we investigated the effects of estrogen on the abnormal expression of cTnI in the hearts of neonatal mice and its potential epigenetic mechanisms. We then evaluated suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, as a new target treatment of diastolic cardiac dysfunction. Postnatal day 0.5 C57BL/6 mice were injected with estrogen for 1 week, then the hearts of 7-day-old neonatal mice were retrieved for examination. The activities of HDAC and HAT were assayed by colorimetry, and the interaction of cTnI with HDAC5 in mice hearts were examined using chromatin immunoprecipitation assays. The expression of cTnI was tested by quantitative real-time RT-PCR and Western blot. Estrogen treated groups displayed a significantly increased HDAC activity in the hearts of neonatal mice while HAT activity remained unchanged. Additionally, HDAC5 was higher at the cTnI promoter, as compared to the saline treated control groups. The acetylation of histone H3K9ac on cTnI promoter significantly decreased in the hearts of neonatal mice treated with estrogen, and the expression of cTnI at transcriptional and protein levels also decreased. SAHA was shown to increase the acetylation of histone H3K9ac and upregulate the expression of cTnI. The data demonstrated that SAHA can correct cTnI expression abnormality caused by estrogen through inhibiting the binding of HDAC5 to the promoter of cTnI. J. Cell. Biochem. 117: 2377-2384, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Guizhou, China
| | - Xiaomei Luo
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Qianlu Xing
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Guizhou, China
| | - Huichao Sun
- Heart Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
14
|
Bugel SM, Wehmas LC, La Du JK, Tanguay RL. Phenotype anchoring in zebrafish reveals a potential role for matrix metalloproteinases (MMPs) in tamoxifen's effects on skin epithelium. Toxicol Appl Pharmacol 2016; 296:31-41. [PMID: 26908177 DOI: 10.1016/j.taap.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 10/24/2022]
Abstract
The zebrafish is a powerful alternative model used to link phenotypes with molecular effects to discover drug mode of action. Using a zebrafish embryo-larval toxicity bioassay, we evaluated the effects of tamoxifen--a widely used anti-estrogen chemotherapeutic. Zebrafish exposed to ≥ 10 μM tamoxifen exhibited a unique necrotic caudal fin phenotype that was rapidly induced regardless of developmental life-stage when treatment was applied. To define tamoxifen's bioactivity resulting in this phenotype, targeted gene expression was used to evaluate 100 transcripts involved in tissue remodeling, calcium signaling, cell cycle and cell death, growth factors, angiogenesis and hypoxia. The most robustly misregulated transcripts in the tail were matrix metalloproteinases mmp9 and mmp13a, induced 127 and 1145 fold, respectively. Expression of c-fos, c-jun, and ap1s1 were also moderately elevated (3-7 fold), consistent with AP-1 activity--a transcription factor that regulates MMP expression. Immunohistochemistry confirmed high levels of induction for MMP13a in affected caudal fin skin epithelial tissue. The necrotic caudal fin phenotype was significantly attenuated or prevented by three functionally unique MMP inhibitors: EDTA (metal chelator), GM 6001 (broad MMP inhibitor), and SR 11302 (AP-1 transcription factor inhibitor), suggesting MMP-dependence. SR 11302 also inhibited induction of mmp9, mmp13a, and a putative MMP target, igfbp1a. Overall, our studies suggest that tamoxifen's effect is the result of perturbation of the MMP system in the skin leading to ectopic expression, cytotoxicity, and the necrotic caudal fin phenotype. These studies help advance our understanding of tamoxifen's non-classical mode of action and implicate a possible role for MMPs in tissues such as skin.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, United States.
| | - Leah C Wehmas
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, United States.
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, United States.
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
15
|
Raftery TD, Volz DC. Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos. Neurotoxicol Teratol 2015; 49:10-8. [DOI: 10.1016/j.ntt.2015.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/14/2015] [Accepted: 02/19/2015] [Indexed: 11/16/2022]
|
16
|
Isales GM, Hipszer RA, Raftery TD, Chen A, Stapleton HM, Volz DC. Triphenyl phosphate-induced developmental toxicity in zebrafish: potential role of the retinoic acid receptor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:221-30. [PMID: 25725299 PMCID: PMC4373973 DOI: 10.1016/j.aquatox.2015.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 05/04/2023]
Abstract
Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) - a high-production volume organophosphate-based flame retardant - results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) - a nuclear receptor that regulates vertebrate heart morphogenesis - in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) - a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) - a major target gene for RA-induced RAR activation in zebrafish - and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans.
Collapse
Affiliation(s)
- Gregory M Isales
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Rachel A Hipszer
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Tara D Raftery
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Albert Chen
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David C Volz
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
17
|
Abstract
Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. The uniqueness of individuals is due to differences in the combination of genetic, epigenetic and environmental determinants. Understanding the genetic basis of phenotypic variation is a key objective in genetics. Gene expression has been considered as an intermediate phenotype, and the association between gene expression and commonly-occurring genetic variants in the general population has been convincingly established. However, there are few methods to assess the impact of rare genetic variants, such as private SNPs, on gene expression. Here we describe a systematic approach, based on the theory of multivariate outlier detection, to identify individuals that show unusual or aberrant gene expression, relative the rest of the study cohort. Through characterizing detected outliers and corresponding gene sets, we are able to identify which gene sets tend to be aberrantly expressed and which individuals show deviant gene expression within a population. One of our major findings is that private SNPs may contribute to aberrant expression in outlier individuals. These private SNPs are more frequently located in the enhancer and promoter regions of genes that are aberrantly expressed, suggesting a possible regulatory function of these SNPs. Overall, our results provide new insight into the determinants of inter-individual variation, which have not been evaluated by large population-level cohort studies.
Collapse
|
18
|
Hamilton CK, Navarro-Martin L, Neufeld M, Basak A, Trudeau VL. Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system. Gen Comp Endocrinol 2014; 205:242-50. [PMID: 24852348 DOI: 10.1016/j.ygcen.2014.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 11/16/2022]
Abstract
Estrogens and their receptors are present at very early stages of vertebrate embryogenesis before gonadal tissues are formed. However, the cellular source and the function of estrogens in embryogenesis remain major questions in developmental endocrinology. We demonstrate the presence of estrogen-synthesizing enzyme aromatase and G protein-coupled estrogen receptor (GPER) proteins throughout early embryogenesis in the model organism, Silurana tropicalis. We provide the first evidence of aromatase in the vertebrate lateral line. High levels of aromatase were detected in the mantle cells of neuromasts, the mechanosensory units of the lateral line, which persisted throughout the course of development (Nieuwkoop and Faber stages 34-47). We show that GPER is expressed in both the accessory and hair cells. Pharmacological activation of GPER with the agonist G-1 disrupted neuromast development and migration. Future study of this novel estrogen system in the amphibian lateral line may shed light on similar systems such as the mammalian inner ear.
Collapse
Affiliation(s)
- Christine K Hamilton
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Laia Navarro-Martin
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Miriam Neufeld
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ajoy Basak
- Faculty of Health Science, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
19
|
Cohen SP, LaChappelle AR, Walker BS, Lassiter CS. Modulation of estrogen causes disruption of craniofacial chondrogenesis in Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:113-120. [PMID: 24747083 DOI: 10.1016/j.aquatox.2014.03.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Estrogen is a steroid hormone that is ubiquitous in vertebrates, but its role in cartilage formation has not been extensively studied. Abnormalities of craniofacial cartilage and bone account for a large portion of birth defects in the United States. Zebrafish (Danio rerio) have been used as models of human disease, and their transparency in the embryonic period affords additional advantages in studying craniofacial development. In this study, zebrafish embryos were treated with 17-β estradiol (E2) or with an aromatase inhibitor and observed for defects in craniofacial cartilage. Concentrations of E2 greater than 2μM caused major disruptions in cartilage formation. Concentrations below 2μM caused subtle changed in cartilage morphology that were only revealed by measurement. The angles formed by cartilage elements in fish treated with 1.5 and 2μM E2 were increasingly wide, while the length of the primary anterior-posterior cartilage element in these fish decreased significantly from controls. These treatments resulted in fish with shorter, flatter faces as estrogen concentration increased. Inhibition of aromatase activity also resulted in similar craniofacial disruption indicating that careful control of estrogen signaling is required for appropriate development. Further investigation of the phenomena described in this study could lead to a better understanding of the etiology of craniofacial birth defects and endocrine disruption of cartilage formation.
Collapse
Affiliation(s)
- Sarah P Cohen
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Adam R LaChappelle
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Benjamin S Walker
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | | |
Collapse
|
20
|
Shi Y, Liu X, Zhu P, Li J, Sham KW, Cheng SH, Li S, Zhang Y, Cheng CH, Lin H. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis. Biochem Biophys Res Commun 2013; 435:21-7. [DOI: 10.1016/j.bbrc.2013.03.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
|
21
|
Aryl Phosphate Esters Within a Major PentaBDE Replacement Product Induce Cardiotoxicity in Developing Zebrafish Embryos: Potential Role of the Aryl Hydrocarbon Receptor. Toxicol Sci 2013; 133:144-56. [DOI: 10.1093/toxsci/kft020] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|