1
|
Shi X, Wang Y, Yang F, Yi Y, Hu Q, Xie T, Li BX, Ma K. Associations of exposure to volatile organic compounds with biological aging: a cross-sectional study. BMC Public Health 2025; 25:1476. [PMID: 40264054 PMCID: PMC12013053 DOI: 10.1186/s12889-025-22374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) are recognized as potentially linked to various health damages. However, the effects of VOCs exposure on biological aging remain unknown. This study aimed to investigate this potential association through cross-sectional analyses. METHODS This study analyzed data from the National Health and Nutrition Examination Surveys (2011-2016). There was a total of 29,902 participants and 3,205 participants were finally included. Biological aging was represented by PhenoAge acceleration calculated through multiple indicators including albumin and alkaline phosphatase and so on. We employed weighted multivariate logistic regression to examine the correlation between individual VOC exposure and biological aging. The least absolute shrinkage and selection operator regression was utilized to identify key VOCs for the weighted quantile sum (WQS) regression, which assessed the association between mixed exposure to VOCs and biological aging. In addition, subgroup analyses were conducted using data from the same database on individuals' daily behaviors, such as physical activity levels, smoking, and alcohol consumption, to explore the influence of daily behaviors on the above associations. RESULTS Logistic regression analysis indicated that exposure to various individual VOCs was associated with biological aging. The WQS results revealed a significant positive association between mixed exposure to VOCs and biological aging (P < 0.001, OR = 1.523). Additionally, we found that participants with drinking, smoking, and lower levels of physical activity were more affected by exposure to individual VOCs. Mixed VOCs exposures differed only between smoking (P < 0.001, OR = 1.422) and non-smoking populations (P = 0.216, OR = 1.158). CONCLUSION VOCs exposure was associated with biological aging, and daily behaviors may influence an individual's susceptibility to such exposure. This discovery provided a new way of thinking about slowing down the aging process and improving overall health.
Collapse
Affiliation(s)
- XinYu Shi
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - YiNi Wang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - Fei Yang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - YangYang Yi
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - QingShan Hu
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - Tian Xie
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China.
| | - Kun Ma
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, Heilongjiang Province, PR China.
| |
Collapse
|
2
|
Fan D, Jing Y, Zhu Y, Ahmad S, Han J. Toluene induces hormetic response of soil alkaline phosphatase and the potential enzyme kinetic mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111123. [PMID: 32861005 DOI: 10.1016/j.ecoenv.2020.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Hormesis of soil enzyme that involved in heavy metal has been attracting much more attention for risk assessment of heavy metal toxicity, but insufficient studies were conducted to define the hormetic responses induced by toluene or other organic pollutions. The objectives of this study were to investigate the hormetic responses of soil enzyme induced by toluene and explore the potential enzyme kinetic mechanism. Soil alkaline phosphatase (ALP) activity was regarded as the endpoint to explore the hormetic responses under different doses of toluene (0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 50.0 and 100.0 μL g-1). Subsequently, we conducted the experiments of enzymatic reaction kinetics and pure enzyme to further verify the potential mechanisms of soil ALP's hormesis. Results showed that ALP activities at 0.1-1.0 μL g-1 toluene were significantly increased in contrast to the control (0 μL g-1 toluene) (P < 0.05) at the exposure time of 30, 36, 48 and 54 h, with the maximum stimulation magnitudes of 24-43%. ALP activities were almost not affected by toluene (2-100 μL L-1) in the whole experimental period (6-54 h). Meanwhile, the values of catalytic efficiency (the radio Vmax/Km, Vmax: maximum reaction velocity and Km: Michaelis constant) and Vmax significantly increased compared with the control, but the value of Km decreased from 2.5 to 1.6. Overall, low dose toluene can induce hormesis of soil ALP. The potential reason is that low-dose toluene could enhance the combination of soil ALP and substrates. We believe that this study will provide a new viewpoint for ecological risk assessment of toluene contaminated soils.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujing Jing
- College of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yongli Zhu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Sajjad Ahmad
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV, 89154-4015, USA
| | - Jiangang Han
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Crescenzo R, Spagnuolo MS, Cancelliere R, Iannotta L, Mazzoli A, Gatto C, Iossa S, Cigliano L. Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain. Mol Neurobiol 2019; 56:7651-7663. [PMID: 31089964 DOI: 10.1007/s12035-019-1617-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Middle age is an early stage of the aging process, during which the consumption of diets rich in saturated fats and/or simple sugars might influence brain function, but only few data are available on this issue. We therefore investigated the impact of a diet rich in saturated fat and fructose (HFF) on mitochondrial physiology in hippocampus and frontal cortex of middle-aged rats (1 year old), by including a group of adult rats (90 days) as a "negative control," lacking the putative effect of aging. Middle-aged rats were fed HFF or control diet for 4 weeks. Mitochondrial function was analyzed by high-resolution respirometry and by assessing the amount of respiratory complexes. Markers of oxidative balance, as well as the protein content of uncoupling protein 2 (UCP2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα), were also assessed. A decrease in the activity of complex I was detected in both brain areas of middle-aged rats. In hippocampus, mitochondrial respiratory capacity and complex IV content decreased with age and increased with HFF diet. Higher protein oxidative damage, decreased antioxidant defenses, and increased UCP2 and PGC-1α content were found in hippocampus of middle-aged rats. HFF feeding induced a significant reduction in the amount of UCP2, PGC-1α, and PPARα, together with higher protein oxidative damage, in both brain areas. Overall, our results point to middle age as a condition of early brain aging for mitochondrial function, with hippocampus being an area more susceptible to metabolic impairment than frontal cortex.
Collapse
Affiliation(s)
- Raffaella Crescenzo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council (CNR-ISPAAM), Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy.
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| |
Collapse
|
4
|
Huang SJ, Xu YM, Lau ATY. Electronic cigarette: A recent update of its toxic effects on humans. J Cell Physiol 2018; 233:4466-4478. [PMID: 29215738 DOI: 10.1002/jcp.26352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes), battery-powered and liquid-vaporizing devices, were invented to replace the conventional cigarette (c-cigarette) smoking for the sake of reducing the adverse effects on multiple organ systems that c-cigarettes have induced. Although some of the identified harmful components in e-cigarettes were alleged to be measured in lower quantity than those in c-cigarettes, researchers unveiled that the toxic effects of e-cigarettes should not be understated. This review is sought for an attempt to throw light on several typical types of e-cigarette components (tobacco-specific nitrosamines, carbonyl compounds, and volatile organic compounds) by revealing their possible impacts on human bodies through different action mechanisms characterized by alteration of specific biomarkers on cellular and molecular levels. In addition, this review is intended to draw the limelight that like c-cigarettes, e-cigarettes could also be accompanied with toxic effects on whole human body, which are especially apparent on respiratory system. From head to foot, from physical aspect to chemical aspect, from genotype to phenotype, potential alterations will take place upon the intake of the liquid aerosol.
Collapse
Affiliation(s)
- Shu-Jie Huang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Bushnell PJ, Ward WO, Morozova TV, Oshiro WM, Lin MT, Judson RS, Hester SD, McKee JM, Higuchi M. Editor's Highlight: Genetic Targets of Acute Toluene Inhalation in Drosophila melanogaster. Toxicol Sci 2017; 156:230-239. [PMID: 28013218 DOI: 10.1093/toxsci/kfw243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interpretation and use of data from high-throughput assays for chemical toxicity require links between effects at molecular targets and adverse outcomes in whole animals. The well-characterized genome of Drosophila melanogaster provides a potential model system by which phenotypic responses to chemicals can be mapped to genes associated with those responses, which may in turn suggest adverse outcome pathways associated with those genes. To determine the utility of this approach, we used the Drosophila Genetics Reference Panel (DGRP), a collection of ∼200 homozygous lines of fruit flies whose genomes have been sequenced. We quantified toluene-induced suppression of motor activity in 123 lines of these flies during exposure to toluene, a volatile organic compound known to induce narcosis in mammals via its effects on neuronal ion channels. We then applied genome-wide association analyses on this effect of toluene using the DGRP web portal (http://dgrp2.gnets.ncsu.edu), which identified polymorphisms in candidate genes associated with the variation in response to toluene exposure. We tested ∼2 million variants and found 82 polymorphisms located in or near 66 candidate genes that were associated with phenotypic variation for sensitivity to toluene at P < 5 × 10-5, and human orthologs for 52 of these candidate Drosophila genes. None of these orthologs are known to be involved in canonical pathways for mammalian neuronal ion channels, including GABA, glutamate, dopamine, glycine, serotonin, and voltage sensitive calcium channels. Thus this analysis did not reveal a genetic signature consistent with processes previously shown to be involved in toluene-induced narcosis in mammals. The list of the human orthologs included Gene Ontology terms associated with signaling, nervous system development and embryonic morphogenesis; these orthologs may provide insight into potential new pathways that could mediate the narcotic effects of toluene.
Collapse
Affiliation(s)
- Philip J Bushnell
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - William O Ward
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Wendy M Oshiro
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Mimi T Lin
- Oak Ridge Institute for Science and Engineering, Oak Ridge, Tennessee
| | - Richard S Judson
- National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, North Carolina
| | - Susan D Hester
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - John M McKee
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina
| |
Collapse
|
6
|
Pandya JD, Royland JE, MacPhail RC, Sullivan PG, Kodavanti PRS. Age- and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats. Neurobiol Aging 2016; 42:25-34. [PMID: 27143418 DOI: 10.1016/j.neurobiolaging.2016.02.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023]
Abstract
Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bioenergetic parameters in 5 brain regions (brain stem [BS], frontal cortex, cerebellum, striatum, hippocampus [HIP]) of 4 diverse age groups (1 month [young], 4 months [adult], 12 months [middle-aged], 24 months [old age]) to understand age-related differences in selected brain regions and their possible contribution to age-related chemical sensitivity. Mitochondrial bioenergetic parameters and enzyme activities were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5/group). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State III respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12, and 24-months age groups. Activities of mitochondrial pyruvate dehydrogenase complex and electron transport chain complexes I, II, and IV enzymes were also age and brain region specific. In general, changes associated with age were more pronounced with enzyme activities declining as the animals aged (young > adult > middle-aged > old age). These age- and brain region-specific observations may aid in evaluating brain bioenergetic impact on the age-related susceptibility to environmental chemical stressors.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Joyce E Royland
- Genetic and Cellular Toxicology Branch, Integrated Systems Toxicology Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert C MacPhail
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Chushak YG, Chapleau RR, Frey JS, Mauzy CA, Gearhart JM. Identifying potential protein targets for toluene using a molecular similarity search, in silico docking and in vitro validation. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00009b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The toxicity of chemicals greatly depends on their interaction with macromolecular targets.
Collapse
Affiliation(s)
- Y. G. Chushak
- Henry M Jackson Foundation for the Advancement of Military Medicine
- Wright Patterson AFB
- USA
- Molecular Bioeffects Branch
- Bioeffects Division
| | - R. R. Chapleau
- Henry M Jackson Foundation for the Advancement of Military Medicine
- Wright Patterson AFB
- USA
- Molecular Bioeffects Branch
- Bioeffects Division
| | - J. S. Frey
- Henry M Jackson Foundation for the Advancement of Military Medicine
- Wright Patterson AFB
- USA
- Molecular Bioeffects Branch
- Bioeffects Division
| | - C. A. Mauzy
- Molecular Bioeffects Branch
- Bioeffects Division
- Human Effectiveness Directorate
- 711th Human Performance Wing
- Air Force Research Laboratory (711 HPW/RHDJ)
| | - J. M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military Medicine
- Wright Patterson AFB
- USA
- Molecular Bioeffects Branch
- Bioeffects Division
| |
Collapse
|
8
|
Moskalev A, Shaposhnikov M, Plyusnina E, Plyusnin S, Shostal O, Aliper A, Zhavoronkov A. Exhaustive data mining comparison of the effects of low doses of ionizing radiation, formaldehyde and dioxins. BMC Genomics 2014; 15 Suppl 12:S5. [PMID: 25563934 PMCID: PMC4303946 DOI: 10.1186/1471-2164-15-s12-s5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Ionizing radiation in low doses is the ubiquitous environmental factor with harmful stochastic effects. Formaldehyde is one of the most reactive household and industrial pollutants. Dioxins are persistent organic pollutants and most potent synthetic poisons effective even at trace concentrations. Environmental pollutants are capable of altering the expression of a variety of genes. To identify the similarities and differences in the effects of low-dose ionizing radiation, formaldehyde and dioxin on gene expression, we performed the bioinformatic analysis of all available published data. Results We found that that in addition to the common p53-, ATM- and MAPK-signaling stress response pathways, genes of cell cycle regulation and proinflammatory cytokines, the studied pollutants induce a variety of other molecular processes. Conclusions The observed patterns provide new insights into the mechanisms of the adverse effects associated with these pollutants. They can also be useful in the development of new bio-sensing methods for detection of pollutants in the environment and combating the deleterious effects.
Collapse
|
9
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|
10
|
Study of the potential oxidative stress induced by six solvents in the rat brain. Neurotoxicology 2012; 35:71-83. [PMID: 23270871 DOI: 10.1016/j.neuro.2012.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 02/03/2023]
Abstract
The mechanisms of action involved in the neurotoxicity of solvents are poorly understood. In vitro studies have suggested that the effects of some solvents might be due to the formation of reactive oxygen species (ROS). This study assesses hydroxyl radical (OH) generation and measures malondialdehyde (MDA) levels in the cerebral tissue of rats exposed to six solvents (n-hexane, n-octane, toluene, n-butylbenzene, cyclohexane and 1,2,4-trimethylcyclohexane). Three of these solvents have been shown to generate ROS in studies carried out in vitro on granular cell cultures from rat cerebellum. We assessed OH production by quantifying the rate of formation of 3,4-dihydroxybenzoic acid using a trapping agent, 4-hydroxybenzoic acid, infused via the microdialysis probe, into the prefrontal cortex of rats exposed intraperitoneally to the solvents. Extracellular MDA was quantified in microdialysates collected from the prefrontal cortex of rats exposed, 6h/day for ten days, to 1000ppm of the solvents (except for n-butylbenzene, generated at 830ppm) in inhalation chambers. Tissue levels of free and total MDA were measured in different brain structures for rats acutely (intraperitoneal route) and sub-acutely (inhalation) exposed to solvents. None of the six solvents studied increased the production of hydroxyl radicals in the prefrontal cortex after acute administration. Nor did they increase extracellular or tissue levels of MDA after 10 days' inhalation exposure. On the other hand, a decrease in the concentrations of free MDA in brain structures was observed after acute administration of n-hexane, 1,2,4-trimethylcyclohexane, toluene and n-butylbenzene. Therefore, data of this study carried out in vivo did not confirm observations made in vitro on cell cultures.
Collapse
|
11
|
Hester SD, Johnstone AF, Boyes WK, Bushnell PJ, Shafer TJ. Transcriptional responses in rat brain associated with sub-chronic toluene inhalation are not predicted by effects of acute toluene inhalation. Neurotoxicol Teratol 2012; 34:530-3. [DOI: 10.1016/j.ntt.2012.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 10/28/2022]
|