1
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
2
|
Datta P, Lee NS, Moolayadukkam S, Sahu RP, Yu X, Guo T, Zhou Q, Wang Y, Puri IK. In Vitro Sonodynamic Therapy Using a High Throughput 3D Glioblastoma Spheroid Model with 5-ALA and TMZ Sonosensitizers. Adv Healthc Mater 2024; 13:e2402877. [PMID: 39434433 DOI: 10.1002/adhm.202402877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Sonodynamic therapy (SDT) administered using low-intensity pulsed ultrasound and sonosensitizers is an emerging, minimally invasive, targeted deep-tissue therapy for solid tumors such as glioblastoma multiforme (GBM). Initial clinical trials show promising outcomes for SDT treatments of GBM. A crucial aspect of SDT is the sonosensitizer that interacts with ultrasound, facilitating energy transfer to the tumor, thus inducing therapeutic efficacy. Current in vitro methods for determining the therapeutic efficacies of sonosensitizers are time-consuming and expensive. A novel high-throughput magnetically printed 3D GBM model is used to overcome this challenge. The hypothesis is that the use of two sonosensitizers, one a chemotherapeutic drug, enhances SDT efficacy through their additive chemical interactions. The GBM model is used to evaluate the effectiveness of two sonosensitizer molecules, 5-aminolevulinic acid (5-ALA) and theU.S. Food and Drug Administration (FDA)-approved chemotherapeutic drug Temozolomide (TMZ). It is confirmed that implement high-throughput GBM models to evaluate sonosensitizer combinations and their efficacies is feasible and, for the first time, show that the combined effect of both sensitizers, 5-ALA and TMZ, is superior for preventing spheroid growth than employing each molecule separately. This finding is relevant for future clinical trials of GBM treatment with SDT.
Collapse
Affiliation(s)
- Priyankan Datta
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nan Sook Lee
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sreejesh Moolayadukkam
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Iovine and Young Academy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rakesh P Sahu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Y Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ishwar K Puri
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
3
|
Kashyap N, Das CR, Datta R, Begum A, Islam M, Bose S, Bose PD. Unravelling the oxygen factor - An investigation of transcriptional activation of hypoxia associated placental angiogenesis in recurrent pregnancy loss (RPL) patients from Assam, India. Placenta 2024; 154:66-73. [PMID: 38905849 DOI: 10.1016/j.placenta.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Recurrent pregnancy loss (RPL) is defined as the spontaneous loss of two or more consecutive pregnancies before 20 weeks of gestation, and affects 7.46 % of the Indian population. About 40-50 % of RPL cases are idiopathic making it a therapeutic challenge for clinicians. This study focuses on elucidating the role of hypoxia-associated placental angiogenesis in these idiopathic RPL cases. METHODS Whole blood and product of conception (POCs) were collected from RPL patients (N = 87) and cases of voluntary abortions (medically terminated pregnancy, MTP; n = 110) as controls with informed consent. Serum separated from whole blood was used to study the ROS-antioxidant status in the cases and controls through colorimetric assays and ELISA. The mRNA extracted from placental tissue samples were used to determine the hypoxic and angiogenic status in cases and controls through real time PCR. Statistical analysis was also carried out to correlate the differential hypoxic status between RPL and MTP cohorts with the expression of angiogenic factors (VEGFA, VEGFR1 and VEGFR2). RESULTS HIF1α mRNA expression was found to be upregulated in the RPL cases. While the serum levels of H2O2 (p = 0.012), guanine oxides and lipid hydroperoxides (LPO) were increased in the RPL cases, reduced glutathione (GSH) was found to be significantly decreased (p = 0.012). Additionally, AUROC analysis also shows an excellent discriminatory ability of 0.850 for serum H2O2 levels. VEGF-A and VEGF-R1 mRNA expression was also found to be downregulated in the RPL cases compared to MTP. DISCUSSION This study indicates that increased oxidative stress may lead to aberrations in the VEGF pathway resulting in improper placentation in RPL cases, and subsequently, pregnancy loss.
Collapse
Affiliation(s)
- N Kashyap
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, 781001, Assam, India
| | - C R Das
- Department of Obstetrics and Gynecology, Gauhati Medical College and Hospital, Guwahati, 781005, Assam, India
| | - R Datta
- Department of Obstetrics and Gynecology, Down Town Hospital, Guwahati, 781026, Assam, India
| | - A Begum
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - M Islam
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - S Bose
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - P D Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, 781001, Assam, India.
| |
Collapse
|
4
|
Pancheri NM, Ellingson AJ, Marchus CR, Durgesh V, Verhage T, Yensen N, Schiele NR. Lysyl Oxidase Production by Murine C3H10T1/2 Mesenchymal Stem Cells Is Increased by TGFβs and Differentially Modulated by Mechanical Stimuli. Stem Cells Dev 2024; 33:355-364. [PMID: 38770821 DOI: 10.1089/scd.2023.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Tendons are frequently injured and have limited regenerative capacity. This motivates tissue engineering efforts aimed at restoring tendon function through strategies to direct functional tendon formation. Generation of a crosslinked collagen matrix is paramount to forming mechanically functional tendon. However, it is unknown how lysyl oxidase (LOX), the primary mediator of enzymatic collagen crosslinking, is regulated by stem cells. This study investigates how multiple factors previously identified to promote tendon formation and healing (transforming growth factor [TGF]β1 and TGFβ2, mechanical stimuli, and hypoxia-inducible factor [HIF]-1α) regulate LOX production in the murine C3H10T1/2 mesenchymal stem cell (MSC) line. We hypothesized that TGFβ signaling promotes LOX activity in C3H10T1/2 MSCs, which is regulated by both mechanical stimuli and HIF-1α activation. TGFβ1 and TGFβ2 increased LOX levels as a function of concentration and time. Inhibiting the TGFβ type I receptor (TGFβRI) decreased TGFβ2-induced LOX production by C3H10T1/2 MSCs. Low (5 mPa) and high (150 mPa) magnitudes of fluid shear stress were applied to test impacts of mechanical stimuli, but without TGFβ2, loading alone did not alter LOX levels. Low loading (5 mPa) with TGFβ2 increased LOX at 7 days greater than TGFβ2 treatment alone. Neither HIF-1α knockdown (siRNA) nor activation (CoCl2) affected LOX levels. Ultimately, results suggest that TGFβ2 and appropriate loading magnitudes contribute to LOX production by C3H10T1/2 MSCs. Potential application of these findings includes treatment with TGFβ2 and appropriate mechanical stimuli to modulate LOX production by stem cells to ultimately control collagen matrix stiffening and support functional tendon formation.
Collapse
Affiliation(s)
- Nicholas M Pancheri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Allison J Ellingson
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Colin R Marchus
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Vibhav Durgesh
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, USA
| | - Tabitha Verhage
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Nicholas Yensen
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Nathan R Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
6
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
7
|
Nagao S, Onishi H, Kawamoto M, Masuda S, Na L, Morisaki S, Iwamoto N, Yamada Y, Koga S, Ichimiya S, Nakayama K, Imaizumi A, Nakashima K, Oda Y, Nakamura M. C4orf47 contributes to the dormancy of pancreatic cancer under hypoxic conditions. J Cancer 2023; 14:306-317. [PMID: 36741255 PMCID: PMC9891878 DOI: 10.7150/jca.78993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
In our comprehensive analysis of pancreatic cancer pathology, we found that the C4orf47 molecule was upregulated in hypoxic environments. C4orf47 is reported to be a centrosome-associated protein, but its biological significance in cancer is completely unknown; therefore, we assessed its role in pancreatic cancer. We found that C4orf47 was a direct target of HIF-1α and is upregulated in hypoxic conditions, in which it suppressed the cell cycle and inhibits cell proliferation through up-regulation of the cell cycle repressors Fbxw-7, P27, and p57; and the down-regulation of the cell cycle promoters c-myc, cyclinD1, and cyclinC. Furthermore, C4orf47 induced epithelial-mesenchymal transition and enhanced their cell plasticity and invasiveness. In addition, the p-Erk/p-p38 ratio was significantly enhanced and down-regulated CD44 expression by C4orf47 suppression, suggesting that C4orf47 is involved in pancreatic cancer dormancy under hypoxic conditions. Furthermore, the potential of C4orf47 expression was a good prognostic biomarker for pancreatic cancer. These results contribute to the elucidation of the pathology of refractory pancreatic cancer and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shinjiro Nagao
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,✉ Corresponding author: Dr Hideya Onishi, Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. E-mail:
| | - Makoto Kawamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Masuda
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Na
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Morisaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Iwamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Hypoxia Affects the Antioxidant Activity of Glutaredoxin 3 in Scylla paramamosain through Hypoxia Response Elements. Antioxidants (Basel) 2022; 12:antiox12010076. [PMID: 36670937 PMCID: PMC9855028 DOI: 10.3390/antiox12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a major environmental stressor that can damage the oxidation metabolism of crustaceans. Glutaredoxin (Grx) is a key member of the thioredoxin superfamily and plays an important role in the host's defense against oxidative stress. At present, the role of Grx in response to hypoxia in crustaceans remains unclear. In this study, the full-length cDNA of Grx3 (SpGrx3) was obtained from the mud crab Scylla paramamosain, which contains a 129-bp 5' untranslated region, a 981-bp open reading frame, and a 1,183-bp 3' untranslated region. The putative SpGrx3 protein contains an N-terminal thioredoxin domain and two C-terminal Grx domains. SpGrx3 was expressed in all tissues examined, with the highest expression in the anterior gills. After hypoxia, SpGrx3 expression was significantly up-regulated in the anterior gills of mud crabs. The expression of Grx2 and glutathione S-transferases was decreased, while the expression of glutathione peroxidases was increased following hypoxia when SpGrx3 was silenced in vivo. In addition, the total antioxidant capacity of SpGrx3-interfered mud crabs was significantly decreased, and the malondialdehyde content was significantly increased during hypoxia. The subcellular localization data indicated that SpGrx3 was predominantly localized in the nucleus when expressed in Drosophila Schneider 2 (S2) cells. Moreover, overexpression of SpGrx3 reduced the content of reactive oxygen species in S2 cells during hypoxia. To further investigate the transactivation mechanism of SpGrx3 during hypoxia, the promoter region of the SpGrx3 was obtained by Genome Walking and three hypoxia response elements (HREs) were predicted. Dual-luciferase reporter assay results demonstrated that SpGrx3 was likely involved in the hypoxia-inducible factor-1 (HIF-1) pathway during hypoxia, which could be mediated through HREs. The results indicated that SpGrx3 is involved in regulating the antioxidant system of mud crabs and plays a critical role in the response to hypoxia.
Collapse
|
9
|
Thévenod F, Schreiber T, Lee WK. Renal hypoxia-HIF-PHD-EPO signaling in transition metal nephrotoxicity: friend or foe? Arch Toxicol 2022; 96:1573-1607. [PMID: 35445830 PMCID: PMC9095554 DOI: 10.1007/s00204-022-03285-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany.
| | - Timm Schreiber
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School EWL, Bielefeld University, R.1 B2-13, Morgenbreede 1, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Abstract
Tendons are collagen-rich musculoskeletal tissues that possess the mechanical strength needed to transfer forces between muscles and bones. The mechanical development and function of tendons are impacted by collagen crosslinks. However, there is a limited understanding of how collagen crosslinking is regulated in tendon during development and aging. Therefore, the objective of the present review was to highlight potential regulators of enzymatic and non-enzymatic collagen crosslinking and how they impact tendon function. The main collagen crosslinking enzymes include lysyl oxidase (LOX) and the lysyl oxidase-like isoforms (LOXL), whereas non-enzymatic crosslinking is mainly mediated by the formation of advanced glycation end products (AGEs). Regulators of the LOX and LOXL enzymes may include mechanical stimuli, mechanotransducive cell signaling pathways, sex hormones, transforming growth factor (TGF)β family, hypoxia, and interactions with intracellular or extracellular proteins. AGE accumulation in tendon is due to diabetic conditions and aging, and can be mediated by diet and mechanical stimuli. The formation of these enzymatic and non-enzymatic collagen crosslinks plays a major role in tendon biomechanics and in the mechanisms of force transfer. A more complete understanding of how enzymatic and non-enzymatic collagen crosslinking is regulated in tendon will better inform tissue engineering and regenerative therapies aimed at restoring the mechanical function of damaged tendons.
Collapse
Affiliation(s)
- A.J. Ellingson
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N.M. Pancheri
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N.R. Schiele
- Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA,Address for correspondence: Nathan R. Schiele, Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID, USA. Telephone number: 208 8859063
| |
Collapse
|
11
|
Orikasa S, Kawashima N, Tazawa K, Hashimoto K, Sunada-Nara K, Noda S, Fujii M, Akiyama T, Okiji T. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 2022; 12:682. [PMID: 35027586 PMCID: PMC8758693 DOI: 10.1038/s41598-021-04453-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Accelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.
Collapse
Affiliation(s)
- Shion Orikasa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mayuko Fujii
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
12
|
He H, Liao Q, Zhao C, Zhu C, Feng M, Liu Z, Jiang L, Zhang L, Ding X, Yuan M, Zhang X, Xu J. Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer 2021; 9:e002755. [PMID: 34615704 PMCID: PMC8496395 DOI: 10.1136/jitc-2021-002755] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hypoxia is a striking feature of most solid tumors and could be used to discriminate tumors from normoxic tissues. Therefore, the design of hypoxia-conditioned Chimeric Antigen Receptor (CAR) T cells is a promising strategy to reduce on-target off-tumor toxicity in adoptive cell therapy. However, existing hypoxia-conditioned CAR-T designs have been only partially successful in enhancing safety profile but accompanied with reduced cytotoxic efficacy. Our goal is to further improve safety profile with retained excellent antitumor efficacy. METHODS In this study, we designed and constructed a hypoxia-inducible transcription amplification system (HiTA-system) to control the expression of CAR in T (HiTA-CAR-T) cells. CAR expression was determined by Flow cytometry, and the activation and cytotoxicity of HiTA-CAR-T cells in vitro were evaluated in response to antigenic stimulations under hypoxic or normoxic conditions. The safety of HiTA-CAR-T cells was profiled in a mouse model for its on-target toxicity to normal liver and other tissues, and antitumor efficacy in vivo was monitored in murine xenograft models. RESULTS Our results showed that HiTA-CAR-T cells are highly restricted to hypoxia for their CAR expression, activation and cytotoxicity to tumor cells in vitro. In a mouse model in vivo, HiTA-CAR-T cells targeting Her2 antigen showed undetectable CAR expression in all different normoxic tissues including human Her2-expresing liver, accordingly, no liver and systemic toxicity were observed; In contrast, regular CAR-T cells targeting Her2 displayed significant toxicity on human Her2-expression liver. Importantly, HiTA-CAR-T cells were able to achieve significant tumor suppression in murine xenograft models. CONCLUSION Our HiTA system showed a remarkable improvement in hypoxia-restricted transgene expression in comparison with currently available systems. HiTA-CAR-T cells presented significant antitumor activities in absence of any significant liver or systemic toxicity in vivo. This approach could be also applied to design CAR-T cell targeting other tumor antigens.
Collapse
Affiliation(s)
- Huan He
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhuoqun Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lang Jiang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Yuan
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kalinichenko SV, Korobko IV, Shepelev MV. Combination of ARE and HRE cis-Regulatory Elements Elevates the Activity of Tumor-Specific hTERT Promoter. Mol Biol 2021. [DOI: 10.1134/s0026893321030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Greenshpan Y, Sharabi O, Ottolenghi A, Cahana A, Kundu K, M Yegodayev K, Elkabets M, Gazit R, Porgador A. Synthetic promoters to induce immune-effectors into the tumor microenvironment. Commun Biol 2021; 4:143. [PMID: 33514819 PMCID: PMC7846768 DOI: 10.1038/s42003-021-01664-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
Harnessing the immune-system to eradicate cancer is becoming a reality in recent years. Engineered immune cells, such as chimeric antigen receptor (CAR) T cells, are facing the danger of an overt life-threatening immune response due to the ON-target OFF-tumor cytotoxicity and Cytokine Release Syndrome. We therefore developed synthetic promoters for regulation of gene expression under the control of inflammation and Hypoxia-induced signals that are associated with the tumor microenvironment (TME). We termed this methodology as chimeric-antigen-receptor-tumor-induced-vector (CARTIV). For proof of concept, we studied synthetic promoters based on promoter-responsive elements (PREs) of IFNγ, TNFα and hypoxia; triple PRE-based CARTIV promoter manifested a synergistic activity in cell-lines and potent activation in human primary T-cells. CARTIV platform can improve safety of CAR T-cells or other engineered immune-cells, providing TME-focused activity and opening a therapeutic window for many tumor-associated antigens that are also expressed by non-tumor healthy tissues.
Collapse
Affiliation(s)
- Yariv Greenshpan
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Sharabi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishag Cahana
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kiran Kundu
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ksenia M Yegodayev
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Elkabets
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roi Gazit
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
15
|
Zhang X, Lei Y, Hu T, Wu Y, Li Z, Jiang Z, Yang C, Zhang L, You Q. Discovery of Clinical Candidate (5-(3-(4-Chlorophenoxy)prop-1-yn-1-yl)-3-hydroxypicolinoyl)glycine, an Orally Bioavailable Prolyl Hydroxylase Inhibitor for the Treatment of Anemia. J Med Chem 2020; 63:10045-10060. [DOI: 10.1021/acs.jmedchem.0c01161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yonghua Lei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Tianhan Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhensheng Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Changyong Yang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Lin W, Xu L, Li G. Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation. Front Bioeng Biotechnol 2020; 8:359. [PMID: 32426343 PMCID: PMC7204390 DOI: 10.3389/fbioe.2020.00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage remains among the most difficult tissues to regenerate due to its poor self-repair capacity. The lysyl oxidase family (LOX; also termed as protein-lysine 6-oxidase), mainly consists of lysyl oxidase (LO) and lysyl oxidase-like 1-4 (LOXL1-LOXL4), has been traditionally defined as cuproenzymes that are essential for stabilization of extracellular matrix, particularly cross-linking of collagen and elastin. LOX is essential in the musculoskeletal system, particularly cartilage. LOXs-mediated collagen cross-links are essential for the functional integrity of articular cartilage. Appropriate modulation of the expression or activity of certain LOX members selectively may become potential promising strategy for cartilage repair. In the current review, we summarized the advances of LOX in cartilage homeostasis and functioning, as well as copper-mediated activation of LOX through hypoxia-responsive signaling axis during recent decades. Also, the molecular signaling network governing LOX expression has been summarized, indicating that appropriate modulation of hypoxia-responsive-signaling-directed LOX expression through manipulation of bioavailability of copper and oxygen is promising for further clinical implications of cartilage regeneration, which has emerged as a potential therapeutic approach for cartilage rejuvenation in tissue engineering and regenerative medicine. Therefore, targeted regulation of copper-mediated hypoxia-responsive signalling axis for selective modulation of LOX expression may become potential effective therapeutics for enhanced cartilage regeneration and rejuvenation in future clinical implications.
Collapse
Affiliation(s)
- Weiping Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Amoorahim M, Valipour E, Hoseinkhani Z, Mahnam A, Rezazadeh D, Ansari M, Shahlaei M, Gamizgy YH, Moradi S, Mansouri K. TSGA10 overexpression inhibits angiogenesis of HUVECs: A HIF-2α biased perspective. Microvasc Res 2019; 128:103952. [PMID: 31704243 DOI: 10.1016/j.mvr.2019.103952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Testis-specific gene antigen 10 (TSGA10) is a protein overexpressed in most cancers; except for some certain types where its expression is reduced. TSGA10 overexpression in HeLa cells has been shown to disrupt hypoxia inducible factor-1α (HIF-1α) axis and exert potent inhibitory effects. Since HIF-1α is structurally and biochemically similar to HIF-2α, TSGA10 is expected to bind HIF-2α and inhibit its function as well. This study elucidated that increased expression of TSGA10 in manipulated human umbilical vein endothelial cells (HUVECs) decreased the proliferation and migration of these cells as affirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and wound healing tests, respectively. It also inhibited in vitro angiogenesis of these cells in 3D collagen-cytodex model. Expression levels of genes controlled by HIF-2α including autocrine vascular endothelial growth factor (VEGF) were also assessed using real-time PCR. Our bioinformatic analysis also showed that TSGA10 could bind HIF-2α. Moreover, flow cytometry results indicated a cell cycle arrest in G2/M. Therefore, this study showed that overexpression of TSGA10, as a tumor suppressor gene, in endothelial cells resulted in decreased proliferation, migration and therefore, angiogenic activity of HUVECs. Since angiogenesis is vital for tumor development and metastasis, our findings could be of clinical significance in cancer therapy.
Collapse
Affiliation(s)
- Mahtab Amoorahim
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azadeh Mahnam
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohabbat Ansari
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Younes Hossainy Gamizgy
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Santos GL, Hartmann S, Zimmermann WH, Ridley A, Lutz S. Inhibition of Rho-associated kinases suppresses cardiac myofibroblast function in engineered connective and heart muscle tissues. J Mol Cell Cardiol 2019; 134:13-28. [DOI: 10.1016/j.yjmcc.2019.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/01/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
|
19
|
Rocco SA, Koneva L, Middleton LYM, Thong T, Solanki S, Karram S, Nambunmee K, Harris C, Rozek LS, Sartor MA, Shah YM, Colacino JA. Cadmium Exposure Inhibits Branching Morphogenesis and Causes Alterations Consistent With HIF-1α Inhibition in Human Primary Breast Organoids. Toxicol Sci 2019; 164:592-602. [PMID: 29741670 DOI: 10.1093/toxsci/kfy112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Developmental cadmium exposure in vivo disrupts mammary gland differentiation, while exposure of breast cell lines to cadmium causes invasion consistent with the epithelial-mesenchymal transition (EMT). The effects of cadmium on normal human breast stem cells have not been measured. Here, we quantified the effects of cadmium exposure on reduction mammoplasty patient-derived breast stem cell proliferation and differentiation. Using the mammosphere assay and organoid formation in 3D hydrogels, we tested 2 physiologically relevant doses of cadmium, 0.25 and 2.5 µM, and tested for molecular alterations using RNA-seq. We functionally validated our RNA-seq findings with a hypoxia-inducible factor (HIF)-1α activity reporter line and pharmaceutical inhibition of HIF-1α in organoid formation assays. 2.5 µM cadmium reduced primary mammosphere formation and branching structure organoid formation rates by 33% and 87%, respectively. Despite no changes in mammosphere formation, 0.25 µM cadmium inhibited branching organoid formation in hydrogels by 73%. RNA-seq revealed cadmium downregulated genes associated with extracellular matrix formation and EMT, while upregulating genes associated with metal response including metallothioneins and zinc transporters. In the RNA-seq data, cadmium downregulated HIF-1α target genes including LOXL2, ZEB1, and VIM. Cadmium significantly inhibited HIF-1α activity in a luciferase assay, and the HIF-1α inhibitor acriflavine ablated mammosphere and organoid formation. These findings show that cadmium, at doses relevant to human exposure, inhibited human mammary stem cell proliferation and differentiation, potentially through disruption of HIF-1α activity.
Collapse
Affiliation(s)
- Sabrina A Rocco
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | - Lada Koneva
- Department of Computational Medicine and Bioinformatics
| | - Lauren Y M Middleton
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | - Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | - Sumeet Solanki
- Molecular and Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sarah Karram
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | - Kowit Nambunmee
- Department of Occupational Health and Safety, Mae Fah Luong University, Chiang Rai, Thailand, 57100
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029
| | | | - Yatrik M Shah
- Molecular and Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, 48109
| |
Collapse
|
20
|
Li Z, Su K, Jiang Z, Yu Y, You Q, Zhang X. Photoactivatable Prolyl Hydroxylase 2 Inhibitors for Stabilizing the Hypoxia-Inducible Factor with Light. J Med Chem 2019; 62:7583-7588. [DOI: 10.1021/acs.jmedchem.9b00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaijun Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhensheng Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yancheng Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Price C, Gill S, Ho ZV, Davidson SM, Merkel E, McFarland JM, Leung L, Tang A, Kost-Alimova M, Tsherniak A, Jonas O, Vazquez F, Hahn WC. Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Res 2019; 79:2564-2579. [PMID: 30898838 DOI: 10.1158/0008-5472.can-18-2674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
We hypothesized that candidate dependencies for which there are small molecules that are either approved or in advanced development for a nononcology indication may represent potential therapeutic targets. To test this hypothesis, we performed genome-scale loss-of-function screens in hundreds of cancer cell lines. We found that knockout of EGLN1, which encodes prolyl hydroxylase domain-containing protein 2 (PHD2), reduced the proliferation of a subset of clear cell ovarian cancer cell lines in vitro. EGLN1-dependent cells exhibited sensitivity to the pan-EGLN inhibitor FG-4592. The response to FG-4592 was reversed by deletion of HIF1A, demonstrating that EGLN1 dependency was related to negative regulation of HIF1A. We also found that ovarian clear cell tumors susceptible to both genetic and pharmacologic inhibition of EGLN1 required intact HIF1A. Collectively, these observations identify EGLN1 as a cancer target with therapeutic potential. SIGNIFICANCE: These findings reveal a differential dependency of clear cell ovarian cancers on EGLN1, thus identifying EGLN1 as a potential therapeutic target in clear cell ovarian cancer patients.
Collapse
Affiliation(s)
- Colles Price
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Stanley Gill
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zandra V Ho
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shawn M Davidson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Erin Merkel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Lisa Leung
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew Tang
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Oliver Jonas
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
22
|
Intrauterine Exposure to Cadmium Reduces HIF-1 DNA-Binding Ability in Rat Fetal Kidneys. TOXICS 2018; 6:toxics6030053. [PMID: 30177602 PMCID: PMC6161213 DOI: 10.3390/toxics6030053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
During embryonic development, some hypoxia occurs due to incipient vascularization. Under hypoxic conditions, gene expression is mainly controlled by hypoxia-inducible factor 1 (HIF-1). The activity of this transcription factor can be altered by the exposure to a variety of compounds; among them is cadmium (Cd), a nephrotoxic heavy metal capable of crossing the placenta and reaching fetal kidneys. The goal of the study was to determine Cd effects on HIF-1 on embryonic kidneys. Pregnant Wistar rats were exposed to a mist of isotonic saline solution or CdCl₂ (DDel = 1.48 mg Cd/kg/day), from gestational day (GD) 8 to 20. Embryonic kidneys were obtained on GD 21 for RNA and protein extraction. Results show that Cd exposure had no effect on HIF-1α and prolyl hydroxylase 2 protein levels, but it reduced HIF-1 DNA-binding ability, which was confirmed by a decrease in vascular endothelial growth factor (VEGF) mRNA levels. In contrast, the protein levels of VEGF were not changed, which suggests the activation of additional regulatory mechanisms of VEGF protein expression to ensure proper kidney development. In conclusion, Cd exposure decreases HIF-1-binding activity, posing a risk on renal fetal development.
Collapse
|
23
|
Wu Y, Jiang Z, Li Z, Gu J, You Q, Zhang X. Click Chemistry-Based Discovery of [3-Hydroxy-5-(1H-1,2,3-triazol-4-yl)picolinoyl]glycines as Orally Active Hypoxia-Inducing Factor Prolyl Hydroxylase Inhibitors with Favorable Safety Profiles for the Treatment of Anemia. J Med Chem 2018; 61:5332-5349. [DOI: 10.1021/acs.jmedchem.8b00549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yue Wu
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihong Li
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Gu
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Chai YC, Mendes LF, van Gastel N, Carmeliet G, Luyten FP. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater 2018; 72:447-460. [PMID: 29626696 DOI: 10.1016/j.actbio.2018.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Rapid neovascularization of a tissue-engineered (TE) construct by the host vasculature is quintessential to warrant effective bone regeneration. This process can be promoted through active induction of angiogenic growth factor secretion or by implementation of in vitro pre-vascularization strategies. In this study, we aimed at optimizing the pro-angiogenic effect of Cobalt (Co2+) to enhance vascular endothelial growth factor (VEGF) expression by human periosteum-derived mesenchymal stem cells (hPDCs). Simultaneously we set out to promote microvascular network formation by co-culturing with human umbilical vein endothelial cells (HUVECs). The results showed that Co2+ treatments (at 50, 100 or 150 µM) significantly upregulated in vitro VEGF expression, but inhibited hPDCs growth and HUVECs network formation in co-cultures. These inhibitory effects were mitigated at lower Co2+ concentrations (at 5, 10 or 25 µM) while VEGF expression remained significantly upregulated and further augmented in the presence of Ascorbic Acid and Dexamethasone possibly through Runx2 upregulation. The supplements also facilitated HUVECs network formation, which was dependent on the quantity and spatial distribution of collagen type-1 matrix deposited by the hPDCs. When applied to hPDCs seeded onto calcium phosphate scaffolds, the supplements significantly induced VEGF secretion in vitro, and promoted higher vascularization upon ectopic implantation in nude mice shown by an increase of CD31 positive blood vessels within the scaffolds. Our findings provided novel insights into the pleotropic effects of Co2+ on angiogenesis (i.e. promoted VEGF secretion and inhibited endothelial network formation), and showed potential to pre-condition TE constructs under one culture regime for improved implant neovascularization in vivo. STATEMENT OF SIGNIFICANT Cobalt (Co2+) is known to upregulate vascular endothelial growth factor (VEGF) secretion, however it also inhibits in vitro angiogenesis through unknown Co2+-induced events. This limits the potential of Co2+ for pro-angiogenesis of tissue engineered (TE) implants. We showed that Co2+ upregulated VEGF expression by human periosteum-derived cells (hPDCs) but reduced the cell growth, and endothelial network formation due to reduction of col-1 matrix deposition. Supplementation with Ascorbic acid and Dexamethasone concurrently improved hPDCs growth, endothelial network formation, and upregulated VEGF secretion. In vitro pre-conditioning of hPDC-seeded TE constructs with this fine-tuned medium enhanced VEGF secretion and implant neovascularization. Our study provided novel insights into the pleotropic effects of Co2+ on angiogenesis and formed the basis for improving implant neovascularization.
Collapse
|
25
|
Wang X, Dong J, Jia L, Zhao T, Lang M, Li Z, Lan C, Li X, Hao J, Wang H, Qin T, Huang C, Yang S, Yu M, Ren H. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett 2017; 393:113-124. [DOI: 10.1016/j.canlet.2017.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
26
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
27
|
Zhu C, Yu J, Pan Q, Yang J, Hao G, Wang Y, Li L, Cao H. Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway. Sci Rep 2016; 6:35489. [PMID: 27765951 PMCID: PMC5073233 DOI: 10.1038/srep35489] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
Abstract
Human placenta-derived mesenchymal stem cells (hPMSCs) reside in a physiologically low-oxygen microenvironment. Hypoxia influences a variety of stem cell cellular activities, frequently involving hypoxia-inducible factor-2 alpha (HIF-2α). This research showed that hPMSCs cultured in hypoxic conditions (5% O2) exhibited a more naïve morphology and had a higher proliferative capability and higher HIF-2α expression than hPMSCs cultured in normoxic conditions (21% O2). Similar to the hypoxic cultures, hPMSCs over-expressing HIF-2α showed higher proliferative potential and higher expression of CCND1 (CyclinD1), MYC (c-Myc), POU5F1 (Oct4) and the components of the MAPK/ERK pathway. In contrast, these genes were down-regulated in the HIF-2α-silenced hPMSCs. After adding the MAPK/ERK inhibitor PD0325901, cell growth and the expression of CCND1 and MYC were inhibited. Furthermore, the chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA) showed that HIF-2α bound to the MAPK3 (ERK1) promoter, indicative of its direct regulation of MAPK/ERK components at the transcriptional level during hPMSC expansion. Taken together, our results suggest that HIF-2α facilitated the preservation of hPMSC stemness and promoted their proliferation by regulating CCND1 and MYC through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Chengxing Zhu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jiong Yu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qiaoling Pan
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jinfeng Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Guangshu Hao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yingjie Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanjuan Li
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Hongcui Cao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003, China
| |
Collapse
|
28
|
Wang G, Shen Y, Cheng G, Bo H, Lin J, Zheng M, Li J, Zhao Y, Li W. Lysyl Oxidase Gene G473A Polymorphism and Cigarette Smoking in Association with a High Risk of Lung and Colorectal Cancers in a North Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E635. [PMID: 27367711 PMCID: PMC4962176 DOI: 10.3390/ijerph13070635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The relationship among the lysyl oxidase (LOX) G473A single nucleotide polymorphism (SNP), cigarette smoking and lung, colorectal, colon and rectum cancer susceptibility was studied in 200 cases of lung cancer, 335 cases of colorectal cancer including 130 cases of colon cancer and 205 cases of rectum cancer, and 335 healthy people in Tangshan, China. Peripheral blood DNA samples were collected, DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) performed, followed by multivariate logistic regression analysis. In comparison to LOX473GG genotype carriers, individuals with LOX473AA exhibited a higher susceptibility to lung, colon-rectum, colon, and rectum cancers with OR values amounting to 3.84-, 2.74-, 2.75-, and 2.74-fold of the control, respectively. In the LOX 473AA-positive population, females were more susceptible than males to carcinogenesis with OR values (female vs. male): 5.25 vs. 3.23, 2.29 vs. 1.51, 2.27 vs. 1.45, and 2.25 vs. 1.53, respectively, for lung, colon-rectum combined, colon, and rectum cancers. LOX G473A polymorphism apparently elevated human sensitivity to cigarette smoking carcinogens for eliciting cancers in the lung and colon only. Thus, LOX G473A polymorphism positively correlates with carcinogenesis and it may be used as an ideal intrinsic biomarker for prediction or diagnosis of carcinogenesis in humans.
Collapse
Affiliation(s)
- Guoli Wang
- The Collage of Public Health, North China University of Science and Technology, Tangshan 063000, China.
| | - Yanqing Shen
- The Collage of Public Health, North China University of Science and Technology, Tangshan 063000, China.
| | - Guang Cheng
- The Clinic Medical College, North China University of Science and Technology, Tangshan 063000, China.
| | - Haimei Bo
- The Clinic Medical College, North China University of Science and Technology, Tangshan 063000, China.
| | - Jia Lin
- The College of Life Science, North China University of Science and Technology, Tangshan 063000, China.
| | - Maogen Zheng
- The Clinic Medical College, North China University of Science and Technology, Tangshan 063000, China.
| | - Jianmin Li
- The Clinic Medical College, North China University of Science and Technology, Tangshan 063000, China.
| | - Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Wande Li
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Calcium/Cobalt Alginate Beads as Functional Scaffolds for Cartilage Tissue Engineering. Stem Cells Int 2016; 2016:2030478. [PMID: 27057167 PMCID: PMC4736768 DOI: 10.1155/2016/2030478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/18/2015] [Indexed: 12/04/2022] Open
Abstract
Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons. The field of tissue engineering currently offers some of the most promising strategies for cartilage restoration, in which assorted biomaterials and cell-based therapies are combined to develop new therapeutic regimens for tissue replacement. The current study describes the in vitro behavior of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated within calcium/cobalt (Ca/Co) alginate beads. These novel chondrogenesis-promoting scaffolds take advantage of the synergy between the alginate matrix and Co+2 ions, without employing costly growth factors (e.g., transforming growth factor betas (TGF-βs) or bone morphogenetic proteins (BMPs)) to direct hADSC differentiation into cartilage-producing chondrocytes.
Collapse
|
30
|
Wu Y, Wang N, Lei Y, Hu T, You Q, Zhang X. Small-molecule inhibitors of HIF-PHD2: a valid strategy to renal anemia treatment in clinical therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00240d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patients with chronic kidney diseases (CKD) always suffer from anemia with severe impacts on their quality of life.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Nan Wang
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yonghua Lei
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Tianhan Hu
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qidong You
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines
- and Jiangsu Key Laboratory of Drug Design and Optimization
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|