1
|
Gilbert ME, Hawks MG, Bell KS, Oshiro W, Wood C, George BJ, Thomas R, Ford J. Iodine Deficiency Exacerbates Thyroidal and Neurological Effects of Developmental Perchlorate Exposure in the Neonatal and Adult Rat. TOXICS 2024; 12:842. [PMID: 39771057 PMCID: PMC11679215 DOI: 10.3390/toxics12120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring. We observed modest reductions in thyroxine (T4) in the serum of dams and no effect on T4 in pup serum in response to maternal exposure to 300 ppm of perchlorate in the drinking water. Likewise, serum T4 was reduced in ID dams, but, as with perchlorate, no effects were evident in the pup. However, when ID was coupled with perchlorate, reductions in pup serum THs and transcriptional alterations in the thyroid gland and pup brain were detected. These observations were accompanied by reductions in the number of cortical inhibitory interneurons containing the calcium-binding protein parvalbumin (Pvalb). Alterations in Pvalb expression in the neonatal brain were associated with deficits in the prepulse inhibition of acoustic startle in adult male offspring and enhanced fear conditioning in females. These findings support and extend structural defects in the brain previously reported in this model. Further, they underscore the critical need to consider additional non-chemical stressors in the determination of hazards and risks posed by environmental contaminants that affect the thyroid system.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - MaryAnn G. Hawks
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Kiersten S. Bell
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Wendy Oshiro
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Carmen Wood
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Barbara Jane George
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
| | - Ryne Thomas
- Centre for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (M.G.H.); (W.O.); (C.W.); (R.T.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Jermaine Ford
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
2
|
Gonnabathula P, Choi MK, Li M, Kabadi SV, Fairman K. Utility of life stage-specific chemical risk assessments based on New Approach Methodologies (NAMs). Food Chem Toxicol 2024; 190:114789. [PMID: 38844066 DOI: 10.1016/j.fct.2024.114789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/17/2024]
Abstract
The safety assessments for chemicals targeted for use or expected to be exposed to specific life stages, including infancy, childhood, pregnancy and lactation, and geriatrics, need to account for extrapolation of data from healthy adults to these populations to assess their human health risk. However, often adequate and relevant toxicity or pharmacokinetic (PK) data of chemicals in specific life stages are not available. For such chemicals, New Approach Methodologies (NAMs), such as physiologically based pharmacokinetic (PBPK) modeling, biologically based dose response (BBDR) modeling, in vitro to in vivo extrapolation (IVIVE), etc. can be used to understand the variability of exposure and effects of chemicals in specific life stages and assess their associated risk. A life stage specific PBPK model incorporates the physiological and biochemical changes associated with each life stage and simulates their impact on the absorption, distribution, metabolism, and elimination (ADME) of these chemicals. In our review, we summarize the parameterization of life stage models based on New Approach Methodologies (NAMs) and discuss case studies that highlight the utility of a life stage based PBPK modeling for risk assessment. In addition, we discuss the utility of artificial intelligence (AI)/machine learning (ML) and other computational models, such as those based on in vitro data, as tools for estimation of relevant physiological or physicochemical parameters and selection of model. We also discuss existing gaps in the available toxicological datasets and current challenges that need to be overcome to expand the utility of NAMs for life stage-specific chemical risk assessment.
Collapse
Affiliation(s)
- Pavani Gonnabathula
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Me-Kyoung Choi
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Shruti V Kabadi
- Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration (FDA), College Park, MD, 20740, USA
| | - Kiara Fairman
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Gilbert ME, Hassan I, O'Shaughnessy KL, Wood C, Stoker TE, Riutta C, Ford JL. Ammonium perchlorate: serum dosimetry, neurotoxicity, and resilience of the neonatal rat thyroid system. Toxicol Sci 2024; 198:113-127. [PMID: 38145495 PMCID: PMC11588387 DOI: 10.1093/toxsci/kfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.
Collapse
Affiliation(s)
- Mary E Gilbert
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Office of Air Quality, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Carmen Wood
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Tammy E Stoker
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Cal Riutta
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA
| | - Jermaine L Ford
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
4
|
Gilbert ME, O’Shaughnessy KL, Bell KS, Ford JL. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. TOXICS 2023; 11:1027. [PMID: 38133428 PMCID: PMC10747616 DOI: 10.3390/toxics11121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Katherine L. O’Shaughnessy
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Kiersten S. Bell
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jermaine L. Ford
- National Center for Computational Toxicology, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
5
|
Decrane R, Stoker T, Murr A, Ford J, El-Masri H. Cross species extrapolation of the disruption of thyroid hormone synthesis by oxyfluorfen using in vitro data, physiologically based pharmacokinetic (PBPK), and thyroid hormone kinetics models. Curr Res Toxicol 2023; 5:100138. [PMID: 38074188 PMCID: PMC10697989 DOI: 10.1016/j.crtox.2023.100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 03/22/2024] Open
Abstract
The thyroid hormones play key roles in physiological processes such as regulation of the metabolic and cardiac systems as well as the development of the brain and surrounding sympathetic nervous system. Recent efforts to screen environmental chemicals for their ability to alter thyroid hormone synthesis, transport, metabolism and/or function have identified novel chemicals that target key processes in the thyroid pathway. One newly identified chemical, oxyfluorfen, is a diphenyl-ether herbicide used for control of annual broadleaf and grassy weeds in a variety of tree fruit, nut, vine, and field crops. Using in vitro high-throughput screening (HTS) assays, oxyfluorofen was identified to be a potent inhibitor of the thyroidal sodium-iodide symporter (NIS). To quantitatively assess this inhibition mechanism in vivo, we extrapolated in vitro NIS inhibition data to in vivo disruption of thyroid hormones synthesis in rats using physiologically based pharmacokinetic (PBPK) and thyroid hormone kinetics models. The overall computational model (chemical PBPK and THs kinetic sub-models) was calibrated against in vivo data for the levels of oxyfluorfen in thyroid tissue and serum and against serum levels of thyroid hormones triiodothyronine (T3) and thyroxine (T4) in rats. The rat thyroid model was then extrapolated to humans using human in vitro HTS data for NIS inhibition and the chemical specific hepatic clearance rate in humans. The overall species extrapolated PBPK-thyroid kinetics model can be used to predict dose-response (% drop in thyroid serum levels compared to homeostasis) relationships in humans. These relationships can be used to estimate points of departure for health risks related to a drop in serum levels of TH hormones based on HTS assays in vitro to in vivo extrapolation (IVIVE), toxicokinetics, and physiological principles.
Collapse
|
6
|
Fisher J, Housand C, Mattie D, Nong A, Moreau M, Gilbert M. Towards translating in vitro measures of thyroid hormone system disruption to in vivo responses in the pregnant rat via a biologically based dose response (BBDR) model. Toxicol Appl Pharmacol 2023; 479:116733. [PMID: 37866708 DOI: 10.1016/j.taap.2023.116733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 μg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 μg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.
Collapse
Affiliation(s)
| | - Conrad Housand
- Magnolia Sciences, Winter Springs, FL, United States of America
| | - David Mattie
- AFRL/711 HPW/RHBAF, WPAFB, OH, United States of America
| | - Andy Nong
- ScitoVation LLC, RTP, NC, United States of America
| | | | - Mary Gilbert
- Office of Research and Development, Center for Public Health and Environmental Assessment, US EPA, RTP, NC, United States of America
| |
Collapse
|
7
|
Gölz L, Baumann L, Pannetier P, Braunbeck T, Knapen D, Vergauwen L. AOP Report: Thyroperoxidase Inhibition Leading to Altered Visual Function in Fish Via Altered Retinal Layer Structure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2632-2648. [PMID: 35942927 DOI: 10.1002/etc.5452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thyroid hormones (THs) are involved in the regulation of many important physiological and developmental processes, including vertebrate eye development. Thyroid hormone system-disrupting chemicals (THSDCs) may have severe consequences, because proper functioning of the visual system is a key factor for survival in wildlife. However, the sequence of events leading from TH system disruption (THSD) to altered eye development in fish has not yet been fully described. The development of this adverse outcome pathway (AOP) was based on an intensive literature review of studies that focused on THSD and impacts on eye development, mainly in fish. In total, approximately 120 studies (up to the end of 2021) were used in the development of this AOP linking inhibition of the key enzyme for TH synthesis, thyroperoxidase (TPO), to effects on retinal layer structure and visual function in fish (AOP-Wiki, AOP 363). In a weight-of-evidence evaluation, the confidence levels were overall moderate, with ample studies showing the link between reduced TH levels and altered retinal layer structure. However, some uncertainties about the underlying mechanism(s) remain. Although the current weight-of-evidence evaluation is based on fish, the AOP is plausibly applicable to other vertebrate classes. Through the re-use of several building blocks, this AOP is connected to the AOPs leading from TPO and deiodinase inhibition to impaired swim bladder inflation in fish (AOPs 155-159), together forming an AOP network describing THSD in fish. This AOP network addresses the lack of thyroid-related endpoints in existing fish test guidelines for the evaluation of THSDCs. Environ Toxicol Chem 2022;41:2632-2648. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
8
|
Gilbert ME, Hassan I, Wood C, O'Shaughnessy KL, Spring S, Thomas S, Ford J. Gestational Exposure to Perchlorate in the Rat: Thyroid Hormones in Fetal Thyroid Gland, Serum, and Brain. Toxicol Sci 2022; 188:117-130. [PMID: 35385113 PMCID: PMC10732305 DOI: 10.1093/toxsci/kfac038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iodine is essential for the production of thyroid hormones. Perchlorate is an environmental contaminant that interferes with iodine uptake into the thyroid gland to reduce thyroid hormone synthesis. As thyroid hormones are critical for brain development, exposure to perchlorate during pregnancy is of concern for the developing fetal brain. In this study, we (1) define profiles of thyroid hormone in the maternal and fetal compartments of pregnant rats in response to inhibition of the sodium-iodide symporter (NIS) by perchlorate and (2) expand inquiry previously limited to serum to include fetal thyroid gland and brain. Perchlorate was added to the drinking water (0, 1, 30, 300, and 1000 ppm) of pregnant rat dams from gestational days (GD) 6-20. On GD20, blood, thyroid gland, and brain were collected from the fetus and dam for thyroid hormone and molecular analyses. Thyroid gland and serum thyroid hormones were dose-dependently reduced, with steeper declines evident in the fetus than in the dam. The thyroid gland revealed perturbations of thyroid hormone-action with greater sensitivity in the fetus than the dam. Thyroid hormones and thyroid hormone-responsive gene expression were reduced in the fetal cortex portending effects on brain development. These findings are the first quantitative assessments of perchlorate-induced deficits in the fetal thyroid gland and fetal brain. We provide a conceptual framework to develop a quantitative NIS adverse outcome pathway for serum thyroid hormone deficits and the potential to impact the fetal brain. Such a framework may also serve to facilitate the translation of in vitro bioactivity to the downstream in vivo consequences of NIS inhibition in the developing fetus.
Collapse
Affiliation(s)
- Mary E Gilbert
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Iman Hassan
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carmen Wood
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Katherine L O'Shaughnessy
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Spring
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Student Education, Oak Ridge, Tennessee, USA
| | - Susan Thomas
- Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Student Education, Oak Ridge, Tennessee, USA
| | - Jermaine Ford
- National Center for Computational Toxicology, US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Handa S, Hassan I, Gilbert M, El-Masri H. Mechanistic Computational Model for Extrapolating In vitro Thyroid Peroxidase (TPO) Inhibition Data to Predict Serum Thyroid Hormone Levels in Rats. Toxicol Sci 2021; 183:36-48. [PMID: 34117770 DOI: 10.1093/toxsci/kfab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High throughput (HTP) in vitro assays are developed to screen chemicals for their potential to inhibit thyroid hormones (THs) synthesis. Some of these experiments, such as the thyroid peroxidase (TPO) inhibition assay, are based on thyroid microsomal extracts. However, the regulation of thyroid disruption chemicals (TDCs) is based on THs in vivo serum levels. This necessitates the estimation of TDCs in vivo tissue levels in the thyroid where THs synthesis inhibition by TPO takes place. The in vivo tissue levels of chemicals are controlled by pharmacokinetic determinants such as absorption, distribution, metabolism and excretion (ADME), and can be described quantitatively in physiologically based pharmacokinetic (PBPK) models. An integrative computational model including chemical specific PBPK and TH kinetics models provides a mechanistic quantitative approach to translate thyroidal HTP in vitro assays to in vivo measures of circulating THs serum levels. This computational framework is developed to quantitatively establish the linkage between applied dose, chemical thyroid tissue levels, thyroid TPO inhibition potential, and in vivo TH serum levels. Once this link is established quantitively, the overall model is used to calibrate the TH kinetics parameters using experimental data for THs levels in thyroid tissue and serum for the two drugs Propylthiouracil (PTU) and Methimazole (MMI). The calibrated quantitative framework is then evaluated against literature data for the environmental chemical ethylenethiourea (ETU). The linkage of PBPK and TH kinetics models illustrates a computational framework that can be extrapolated to humans to screen chemicals based on their exposure levels and potential to disrupt serum THs levels in vivo.
Collapse
Affiliation(s)
- Sakshi Handa
- Center for Computational Toxicology and Exposure, Research Triangle Park, NC
| | - Iman Hassan
- Office of Air Quality Planning and Standards, Research Triangle Park, NC
| | - Mary Gilbert
- Center for Public Health and Environmental Assessment, Research Triangle Park, NC
| | - Hisham El-Masri
- Center for Computational Toxicology and Exposure, Research Triangle Park, NC
| |
Collapse
|
10
|
Hassan I, El-Masri H, Ford J, Brennan A, Handa S, Paul Friedman K, Gilbert ME. Extrapolating In Vitro Screening Assay Data for Thyroperoxidase Inhibition to Predict Serum Thyroid Hormones in the Rat. Toxicol Sci 2020; 173:280-292. [PMID: 31697382 DOI: 10.1093/toxsci/kfz227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroperoxidase (TPO) is an enzyme essential for thyroid hormone (TH) synthesis and a target site for a number of xenobiotics that disrupt TH homeostasis. An in vitro high-throughput screening assay for TPO inhibition, the Amplex UltraRed-TPO (AUR-TPO), has been used to screen the ToxCast chemical libraries for this action. Output from this assay would be most useful if it could be readily translated into an in vivo response, namely a reduction of TH in serum. To this end, the relationship between TPO inhibition in vitro and serum TH decreases was examined in rats exposed to 2 classic TPO inhibitors, propylthiouracil (PTU) and methimazole (MMI). Serum and gland PTU, MMI, and TH levels were quantified using tandem liquid chromatography mass spectrometry. Thyroperoxidase activity was determined in thyroid gland microsomes treated with PTU or MMI in vitro and ex vivo from thyroid gland microsomes prepared from exposed animals. A quantitative model was constructed by contrasting in vitro and ex vivo AUR-TPO results and the in vivo time-course and dose-response analysis. In vitro:ex vivo correlations of AUR-TPO outputs indicated that less than 30% inhibition of TPO in vitro was sufficient to reduce serum T4 by 20%, a degree of regulatory significance. Although further testing of model estimates using other TPO inhibitors is essential for verification of these initial findings, the results of this study provide a means to translate in vitro screening assay results into predictions of in vivo serum T4 changes to inform risk assessment.
Collapse
Affiliation(s)
- Iman Hassan
- Toxicity Assessment Division.,National Health and Environmental Effects Research Laboratory
| | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory.,Integrated Systems Toxicology Division
| | - Jermaine Ford
- National Health and Environmental Effects Research Laboratory.,Analytical Chemistry Research Core/Research Cores Unit, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Amanda Brennan
- National Health and Environmental Effects Research Laboratory.,Analytical Chemistry Research Core/Research Cores Unit, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sakshi Handa
- National Health and Environmental Effects Research Laboratory.,Integrated Systems Toxicology Division.,Oak Ridge Institute for Science Education, Oak Ridge, Tennessee
| | - Katie Paul Friedman
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Mary E Gilbert
- Toxicity Assessment Division.,National Health and Environmental Effects Research Laboratory
| |
Collapse
|
11
|
Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs. Pharmaceutics 2020; 12:pharmaceutics12070685. [PMID: 32698409 PMCID: PMC7408157 DOI: 10.3390/pharmaceutics12070685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Drug dosing in neonates should be based on integrated knowledge concerning the disease to be treated, the physiological characteristics of the neonate, and the pharmacokinetics (PK) and pharmacodynamics (PD) of a given drug. It is critically important that all sources of information be leveraged to optimize dose selection for neonates. Sources may include data from adult studies, pediatric studies, non-clinical (juvenile) animal models, in vitro studies, and in silico models. Depending on the drug development program, each of these modalities could be used to varying degrees and with varying levels of confidence to guide dosing. This paper aims to illustrate the variability between neonatal drug development programs for neonatal diseases that are similar to those seen in other populations (meropenem), neonatal diseases related but not similar to pediatric or adult populations (clopidogrel, thyroid hormone), and diseases unique to neonates (caffeine, surfactant). Extrapolation of efficacy from older children or adults to neonates is infrequently used. Even if a disease process is similar between neonates and children or adults, such as with anti-infectives, additional dosing and safety information will be necessary for labeling, recognizing that dosing in neonates is confounded by maturational PK in addition to body size.
Collapse
|
12
|
Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework. Toxicol Sci 2017; 160:57-73. [PMID: 28973696 PMCID: PMC10623382 DOI: 10.1093/toxsci/kfx163] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Adequate levels of thyroid hormone (TH) are needed for proper brain development, deficiencies may lead to adverse neurologic outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures and decline in serum TH resulting in neurodevelopmental impairment is poorly understood. The present study developed a quantitative adverse outcome pathway where serum thyroxin (T4) reduction following inhibition of thyroperoxidase in the thyroid gland are described and related to deficits in fetal brain TH and the development of a brain malformation, cortical heterotopia. Pregnant rats were exposed to 6-propylthiouracil (PTU 0, 0.1, 0.5, 1, 2, or 3 parts per million [ppm]) from gestational days 6-20, sequentially increasing PTU concentrations in maternal thyroid gland and serum as well as in fetal serum. Dams exposed to 0.5 ppm PTU and higher exhibited dose-dependent decreases in thyroidal T4. Serum T4 levels in the dam were significantly decreased with exposure to 2 and 3 ppm PTU. In the fetus, T4 decrements were first observed at a lower dose of 0.5 ppm PTU. Based on these data, fetal brain T4 levels were estimated from published literature sources, and quantitatively linked to increases in the size of the heterotopia present in the brains of offspring. These data show the potential of in vivo assessments and computational descriptions of biologic responses to predict the development of this structural brain malformation and use of quantitative adverse outcome pathway approach to evaluate brain deficits that may result from exposure to other TH disruptors.
Collapse
Affiliation(s)
| | - Hisham El-Masri
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Patricia A Kosian
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Jermaine Ford
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | | |
Collapse
|
13
|
Lin Z, Jaberi-Douraki M, He C, Jin S, Yang RSH, Fisher JW, Riviere JE. Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples. Toxicol Sci 2017; 158:23-35. [DOI: 10.1093/toxsci/kfx070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Wittwehr C, Aladjov H, Ankley G, Byrne HJ, de Knecht J, Heinzle E, Klambauer G, Landesmann B, Luijten M, MacKay C, Maxwell G, Meek MEB, Paini A, Perkins E, Sobanski T, Villeneuve D, Waters KM, Whelan M. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicol Sci 2017; 155:326-336. [PMID: 27994170 PMCID: PMC5340205 DOI: 10.1093/toxsci/kfw207] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.
Collapse
Affiliation(s)
| | | | - Gerald Ankley
- US Environmental Protection Agency, Duluth, Minnesota 55804
| | | | - Joop de Knecht
- National Institute for Public Health and the Environment (RIVM), Bilthoven, MA 3721, The Netherlands
| | - Elmar Heinzle
- Universität des Saarlandes, 66123 Saarbrücken, Germany
| | | | | | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, MA 3721, The Netherlands
| | - Cameron MacKay
- Unilever Safety and Environmenta Assurance Centre, Sharnbrook, MK44 1LQ, UK
| | - Gavin Maxwell
- Unilever Safety and Environmenta Assurance Centre, Sharnbrook, MK44 1LQ, UK
| | | | - Alicia Paini
- European Commission, Joint Research Centre, Ispra 21027, Italy
| | - Edward Perkins
- US Army Engineer Research and Development Center, Vicksburg, Mississippi 39180
| | | | - Dan Villeneuve
- US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Katrina M Waters
- Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Maurice Whelan
- European Commission, Joint Research Centre, Ispra 21027, Italy
| |
Collapse
|
15
|
Fisher W, Wang J, George NI, Gearhart JM, McLanahan ED. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective. PLoS One 2016; 11:e0149300. [PMID: 26930410 PMCID: PMC4773173 DOI: 10.1371/journal.pone.0149300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.
Collapse
Affiliation(s)
- W. Fisher
- US FDA, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, Arkansas, 72079, United States of America
- * E-mail:
| | - Jian Wang
- US FDA, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Silver Springs, Maryland, 20993, United States of America
| | - Nysia I. George
- US FDA, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, Arkansas, 72079, United States of America
| | - Jeffery M. Gearhart
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Bldg 837, Wright-Patterson AFB, Ohio, 43433, United States of America
- Wright State University Boonshoft School of Medicine, Dayton, Ohio, 45435, United States of America
| | - Eva D. McLanahan
- CDC/ATSDR, Division of Community Health Investigations, 4770 Buford HWY NE, Atlanta, Georgia, 30341, United States of America
| |
Collapse
|
16
|
Lumen A, McNally K, George N, Fisher JW, Loizou GD. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system. Front Pharmacol 2015; 6:107. [PMID: 26074819 PMCID: PMC4444753 DOI: 10.3389/fphar.2015.00107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022] Open
Abstract
A deterministic biologically based dose-response model for the thyroidal system in a near-term pregnant woman and the fetus was recently developed to evaluate quantitatively thyroid hormone perturbations. The current work focuses on conducting a quantitative global sensitivity analysis on this complex model to identify and characterize the sources and contributions of uncertainties in the predicted model output. The workflow and methodologies suitable for computationally expensive models, such as the Morris screening method and Gaussian Emulation processes, were used for the implementation of the global sensitivity analysis. Sensitivity indices, such as main, total and interaction effects, were computed for a screened set of the total thyroidal system descriptive model input parameters. Furthermore, a narrower sub-set of the most influential parameters affecting the model output of maternal thyroid hormone levels were identified in addition to the characterization of their overall and pair-wise parameter interaction quotients. The characteristic trends of influence in model output for each of these individual model input parameters over their plausible ranges were elucidated using Gaussian Emulation processes. Through global sensitivity analysis we have gained a better understanding of the model behavior and performance beyond the domains of observation by the simultaneous variation in model inputs over their range of plausible uncertainties. The sensitivity analysis helped identify parameters that determine the driving mechanisms of the maternal and fetal iodide kinetics, thyroid function and their interactions, and contributed to an improved understanding of the system modeled. We have thus demonstrated the use and application of global sensitivity analysis for a biologically based dose-response model for sensitive life-stages such as pregnancy that provides richer information on the model and the thyroidal system modeled compared to local sensitivity analysis.
Collapse
Affiliation(s)
- Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration Jefferson, AR, USA
| | | | - Nysia George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration Jefferson, AR, USA
| | - Jeffrey W Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration Jefferson, AR, USA
| | | |
Collapse
|