1
|
Tiwari V, Shandily S, Albert J, Mishra V, Dikkatwar M, Singh R, Sah SK, Chand S. Insights into medication-induced liver injury: Understanding and management strategies. Toxicol Rep 2025; 14:101976. [PMID: 40125297 PMCID: PMC11928981 DOI: 10.1016/j.toxrep.2025.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Drug-induced liver injury (DILI) has increasingly become a major concern in Western countries since the late 1960s, with an estimated annual incidence of 13.9-19.1 cases per 100,000 people. DILI is a significant cause of acute liver failure, exhibiting a high mortality rate of 10-50 %. Its etiology includes medications, herbal products, and dietary supplements, exacerbated by pre-existing liver conditions, sonorities, pregnancy, and nutritional deficiencies. It is categorized into intrinsic and idiosyncratic reactions. Intrinsic DILI, dose-dependent and predictable, is primarily caused by substances like paracetamol, which leads to liver toxicity through direct metabolic pathways. In contrast, idiosyncratic DILI is less common, unpredictable, and affects susceptible individuals, with non-steroidal anti-inflammatory drugs, antibiotics, and cardiovascular agents frequently implicated in hospitals. Oxidative stress, mitochondrial dysfunction, bile salt export inhibition, and stress on the endoplasmic reticulum are some DILI-related pathophysiology. Diagnosis relies on biochemical tests, serological markers, radiological investigations, and liver biopsy. Management strategies emphasize the identification and cessation of the offending drugs, supportive care, and specific treatment options targeted to the culprit drugs. Management depends on the severity and nature of the injury.
Collapse
Affiliation(s)
- Vatsalya Tiwari
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Shrishti Shandily
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Jessielina Albert
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Vaibhav Mishra
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Manoj Dikkatwar
- DY Patil University School of Pharmacy, DY Patil (Deemed to be University), Nerul, Navi Mumbai, Maharashtra 400706, India
| | - Rohit Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Sujit Kumar Sah
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Sharad Chand
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| |
Collapse
|
2
|
Zhong Y, Zhou L, Wang H, Lin S, Liu T, Kong X, Xiao G, Gao H. Kindlin-2 maintains liver homeostasis by regulating GSTP1-OPN-mediated oxidative stress and inflammation in mice. J Biol Chem 2024; 300:105601. [PMID: 38159860 PMCID: PMC10831259 DOI: 10.1016/j.jbc.2023.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatocyte plays a principal role in preserving integrity of the liver homeostasis. Our recent study demonstrated that Kindlin-2, a focal adhesion protein that activates integrins and regulates cell-extracellular matrix interactions, plays an important role in regulation of liver homeostasis by inhibiting inflammation pathway; however, the molecular mechanism of how Kindlin-2 KO activates inflammation is unknown. Here, we show that Kindlin-2 loss largely downregulates the antioxidant glutathione-S-transferase P1 in hepatocytes by promoting its ubiquitination and degradation via a mechanism involving protein-protein interaction. This causes overproduction of intracellular reactive oxygen species and excessive oxidative stress in hepatocytes. Kindlin-2 loss upregulates osteopontin in hepatocytes partially because of upregulation of reactive oxygen species and consequently stimulates overproduction of inflammatory cytokines and infiltration in liver. The molecular and histological deteriorations caused by Kindlin-2 deficiency are markedly reversed by systemic administration of an antioxidant N-acetylcysteine in mice. Taken together, Kindlin-2 plays a pivotal role in preserving integrity of liver function.
Collapse
Affiliation(s)
- Yiming Zhong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, School of Life Sciences, Jinshan Hospital, Fudan University, Shanghai, China; Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, School of Life Sciences, Jinshan Hospital, Fudan University, Shanghai, China
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemin Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, School of Life Sciences, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Xingxing Kong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, School of Life Sciences, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Huanqing Gao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, School of Life Sciences, Jinshan Hospital, Fudan University, Shanghai, China; Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Li Y, Wang S, Ran K, Hu Z, Liu Z, Duan K. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis. Mol Med Rep 2015; 12:2953-60. [PMID: 25936412 DOI: 10.3892/mmr.2015.3697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/15/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Saiying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhonghua Hu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kaiming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|