1
|
Shen C, Zuo Q, Shao Z, Lin Y, Chen S. Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 2025; 55:86. [PMID: 40183403 PMCID: PMC12005369 DOI: 10.3892/ijmm.2025.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qiang Zuo
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhengbin Shao
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
2
|
Yang Y, Li Y, Wang J, Hong L, Qiao S, Wang C, An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp Ther Med 2021; 21:137. [PMID: 33456504 PMCID: PMC7791965 DOI: 10.3892/etm.2020.9569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Ying Li
- Department of Cardiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Wang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
3
|
Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf) 2020; 228:e13396. [PMID: 31595611 DOI: 10.1111/apha.13396] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality worldwide. Cardiovascular diseases such as acute myocardial infarction, ischaemia/reperfusion injury and heart failure are associated with cardiac autonomic imbalance characterized by sympathetic overactivity and parasympathetic withdrawal from the heart. Increased parasympathetic activity by electrical vagal nerve stimulation has been shown to provide beneficial effects in the case of cardiovascular diseases in both animals and patients by improving autonomic function, cardiac remodelling and mitochondrial function. However, clinical limitations for electrical vagal nerve stimulation exist because of its invasive nature, costly equipment and limited clinical validation. Therefore, novel therapeutic approaches which moderate parasympathetic activities could be beneficial for in the case of cardiovascular disease. Acetylcholinesterase inhibitors inhibit acetylcholinesterase and hence increase cholinergic transmission. Recent studies have reported that acetylcholinesterase inhibitors improve autonomic function and cardiac function in cardiovascular disease models. Despite its potential clinical benefits for cardiovascular disease patients, the role of acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation remains unclear. This article comprehensively reviews the effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure scenarios from in vitro and in vivo studies to clinical reports. The mechanisms involved are also discussed in this review.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
4
|
Cassambai S, Mee CJ, Renshaw D, Hussain A. Tiotropium bromide, a long acting muscarinic receptor antagonist triggers intracellular calcium signalling in the heart. Toxicol Appl Pharmacol 2019; 384:114778. [DOI: 10.1016/j.taap.2019.114778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 12/30/2022]
|
5
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
6
|
黄 艳, 杨 天, 金 植, 王 娅, 叶 红, 高 琴, 李 正. [Role of mitochondrial permeability transition pore in mediating the effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:547-553. [PMID: 29891450 PMCID: PMC6743906 DOI: 10.3969/j.issn.1673-4254.2018.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of mitochondrial permeability transition pore (MPTP) opening in mediating the effect of endomorphine-1 postconditioning to alleviate myocardial ischemia-reperfusion (IR) injury in rats. METHODS Forty-five male SD rats were randomized equally for sham operation, myocardial IR injury, endomorphin-1 postconditioning, atractyloside (a MPTP opener) postconditioning, or endomorphin-1 + atractyloside postconditioning. The hemodynamic param-eters of the rats were monitored in real time via carotid artery cannulation to the left ventricle. After reperfusion, plasma samples were collected for biochemical analyses. The size of myocardial infarct area was detected using Evans blue and TTC double staining, and the myocardial expressions of apoptosis-related proteins Bax, Bcl-2 and cleaved caspase-3 were analyzed using Western blotting. RESULTS Myocardial IR injury resulted in significantly decreased heart rate and blood pressure in the rats (P<0.05). Compared with those in IR group, the rats with endomorphin-1 postconditioning showed significantly increased heart rate and blood pressure (P<0.05), lowered contents or activities of LDH, CK-MB, cTnI, IL-6, TNF-α, Cyt-C and MDA in the plasma (P<0.05), increased plasma SOD activity (P<0.05), reduced size of myocardial infarction, decreased myocardial expression of Bax and cleaved caspase-3 protein (P<0.05), and increased myocardial expression of Bcl-2 protein (P<0.05). All these changes induced by endomorphin-1 were obviously reversed by atractyloside postconditioning (P<0.05). CONCLUSION Endomorphin-1 postconditioning protects against myocardial IR injury in rats probably by inhibiting the opening of MPTP and reducing cardiac myocyte apoptosis via down-regulating cleaved caspase-3 expression.
Collapse
Affiliation(s)
- 艳平 黄
- 蚌埠医学院 生理教研室, 安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 天华 杨
- 蚌埠医学院 生理教研室, 安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 植炎 金
- 苏州大学药学院, 江苏 苏州 215123Soochow University College of Pharmacy, Suzhou 215123, China
| | - 娅 王
- 蚌埠医学院 生理教研室, 安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 红伟 叶
- 蚌埠医学院 科研中心, 安徽 蚌埠 233030Science Research Center, Bengbu Medical College, Bengbu 233030, China
| | - 琴 高
- 蚌埠医学院 生理教研室, 安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院 科研中心, 安徽 蚌埠 233030Science Research Center, Bengbu Medical College, Bengbu 233030, China
| | - 正红 李
- 蚌埠医学院 生理教研室, 安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|