1
|
Petzuch B, Benardeau A, Hofmeister L, Meyer J, Hartmann E, Pavkovic M, Mathar I, Sandner P, Ellinger-Ziegelbauer H. Urinary miRNA profiles in chronic kidney injury - Benefits of extracellular vesicle enrichment and miRNAs as potential biomarkers for renal fibrosis, glomerular injury and endothelial dysfunction. Toxicol Sci 2022; 187:35-50. [PMID: 35244176 DOI: 10.1093/toxsci/kfac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micro-RNAs (miRNAs) are regulators of gene expression and play an important role in physiological homeostasis and disease. In biofluids miRNAs can be found in protein complexes or in extracellular vesicles (EVs). Altered urinary miRNAs are reported as potential biomarkers for chronic kidney disease (CKD). In this context we compared established urinary protein biomarkers for kidney injury with urinary miRNA profiles in obese ZSF1 and hypertensive renin transgenic rats. Additionally, the benefit of urinary EV enrichment was investigated in vivo and the potential association of urinary miRNAs with renal fibrosis in vitro. Kidney damage in both rat models was confirmed by histopathology, proteinuria, and increased levels of urinary protein biomarkers. In total 290 miRNAs were elevated in obese ZSF1 rats compared to lean controls, while 38 miRNAs were altered in obese ZSF1 rats during 14 to 26 weeks of age. These 38 miRNAs correlated better with disease progression than established urinary protein biomarkers. MiRNAs increased in obese ZSF1 rats were associated with renal inflammation, fibrosis, and glomerular injury. Eight miRNAs were also changed in urinary EVs of renin transgenic rats, including one which might play a role in endothelial dysfunction. EV enrichment increased the number and detection level of several miRNAs implicated in renal fibrosis in vitro and in vivo. Our results show the benefit of EV enrichment for miRNA detection and the potential of total urine and urinary EV-associated miRNAs as biomarkers of altered kidney physiology, renal fibrosis and glomerular injury, and disease progression in hypertension and obesity induced CKD.
Collapse
Affiliation(s)
- B Petzuch
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Investigative Toxicology, Department of Non-Clinical Drug Safety, 88400 Biberach (Riß), Germany
| | - A Benardeau
- Novo Nordisk A/S,Cardio-Renal Biology, Måløv, Denmark
| | - L Hofmeister
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - J Meyer
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - E Hartmann
- Bayer AG, Pharmaceuticals, Toxicology, Pathology and Clinical Pathology, 42096 Wuppertal, Germany
| | - M Pavkovic
- Bayer AG, Pharmaceuticals, Investigational Toxicology, 42096 Wuppertal, Germany
| | - I Mathar
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany
| | - P Sandner
- Bayer AG, Pharmaceuticals, Cardiovascular Research, 42096 Wuppertal, Germany.,Hannover Medical School, Institute of Pharmacology, 30625 Hannover, Germany
| | | |
Collapse
|
2
|
Zhuang W, Camacho L, Silva CS, Thomson M, Snyder K. A robust biostatistical method leverages informative but uncertainly determined qPCR data for biomarker detection, early diagnosis, and treatment. PLoS One 2022; 17:e0263070. [PMID: 35100319 PMCID: PMC8803186 DOI: 10.1371/journal.pone.0263070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
As a common medium-throughput technique, qPCR (quantitative real-time polymerase chain reaction) is widely used to measure levels of nucleic acids. In addition to accurate and complete data, experimenters have unavoidably observed some incomplete and uncertainly determined qPCR data because of intrinsically low overall amounts of biological materials, such as nucleic acids present in biofluids. When there are samples with uncertainly determined qPCR data, some investigators apply the statistical complete-case method by excluding the subset of samples with uncertainly determined data from analysis (CO), while others simply choose not to analyze (CNA) these datasets altogether. To include as many observations as possible in analysis for interesting differential changes between groups, some investigators set incomplete observations equal to the maximum quality qPCR cycle (MC), such as 32 and 40. Although straightforward, these methods may decrease the sample size, skew the data distribution, and compromise statistical power and research reproducibility across replicate qPCR studies. To overcome the shortcomings of the existing, commonly-used qPCR data analysis methods and to join the efforts in advancing statistical analysis in rigorous preclinical research, we propose a robust nonparametric statistical cycle-to-threshold method (CTOT) to analyze incomplete qPCR data for two-group comparisons. CTOT incorporates important characteristics of qPCR data and time-to-event statistical methodology, resulting in a novel analytical method for qPCR data that is built around good quality data from all subjects, certainly determined or not. Considering the benchmark full data (BFD), we compared the abilities of CTOT, CO, MC, and CNA statistical methods to detect interesting differential changes between groups with informative but uncertainly determined qPCR data. Our simulations and applications show that CTOT improves the power of detecting and confirming differential changes in many situations over the three commonly used methods without excess type I errors. The robust nonparametric statistical method of CTOT helps leverage qPCR technology and increase the power to detect differential changes that may assist decision making with respect to biomarker detection and early diagnosis, with the goal of improving the management of patient healthcare.
Collapse
Affiliation(s)
- Wei Zhuang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Camila S. Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Michael Thomson
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kevin Snyder
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
3
|
Chorley BN, Ellinger-Ziegelbauer H, Tackett M, Simutis FJ, Harrill AH, McDuffie J, Atabakhsh E, Nassirpour R, Whiteley LO, Léonard JF, Carswell GK, Harpur E, Chen CL, Gautier JC. Urinary miRNA Biomarkers of Drug-Induced Kidney Injury and Their Site Specificity Within the Nephron. Toxicol Sci 2021; 180:1-16. [PMID: 33367795 PMCID: PMC7916737 DOI: 10.1093/toxsci/kfaa181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urinary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted. The overall goal was to propose miRNA biomarker candidates for DIKI that could supplement information provided by protein kidney biomarkers in urine. Rats were treated with nephrotoxicants causing injury to distinct nephron segments: the glomerulus, proximal tubule, thick ascending limb (TAL) of the loop of Henle and CD. Meta-analysis identified miR-192-5p as a potential proximal tubule-specific urinary miRNA candidate. This result was supported by data obtained in laser capture microdissection nephron segments showing that miR-192-5p expression was enriched in the proximal tubule. Discriminative miRNAs including miR-221-3p and -222-3p were increased in urine from rats treated with TAL versus proximal tubule toxicants in accordance with their expression localization in the kidney. Urinary miR-210-3p increased up to 40-fold upon treatment with TAL toxicants and was also enriched in laser capture microdissection samples containing TAL and/or CD versus proximal tubule. miR-23a-3p was enriched in the glomerulus and was increased in urine from rats treated with doxorubicin, a glomerular toxicant, but not with toxicants affecting other nephron segments. Taken together these results suggest that urinary miRNA panels sourced from specific nephron regions may be useful to discriminate the pathology of toxicant-induced lesions in the kidney, thereby contributing to DIKI biomarker development needs for industry, clinical, and regulatory use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | | | | | - Frank J Simutis
- Bristol-Myers Squibb Company, New Brunswick, New Jersey 08901, USA
| | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - James McDuffie
- Janssen Research & Development, LLC, San Diego, California 92121, USA
| | | | - Rounak Nassirpour
- Pfizer Drug Safety Research and Development, Cambridge, Massachusetts 02139, USA
| | - Laurence O Whiteley
- Pfizer Drug Safety Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Gleta K Carswell
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Ernie Harpur
- Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005, USA
| | | |
Collapse
|
4
|
Xu M, Yi M, Li N. MicroRNA-17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1402-1411. [PMID: 33835671 DOI: 10.1002/tox.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Glomerulonephritis, also known as nephritis syndrome (nephritis for short), is a common kidney disease. Previous research has proved that microRNAs (miRNAs) frequently regulate various diseases including nephritis. Nonetheless, the biological function and molecular mechanism of miR-17-5p are unclear in nephritis. In the current study, RT-qPCR analysis showed that miR-17-5p was downregulated in Ang II-induced podocytes. Also, according to the results from RT-qPCR analysis, CCK-8 assay, flow cytometric analysis, western blot analysis, and ELISA miR-17-5p elevation alleviated Ang II-induced podocyte injury. Besides, luciferase reporter assay, western blot and RT-qPCR analyses revealed that SMOC2 was targeted by miR-17-5p in Ang II-induced podocytes. Additionally, rescue assays demonstrated that overexpressed SMOC2 counteracted the influence of overexpressed miR-17-5p on cell injury of Ang II-induced podocytes. Moreover, our data suggested that miR-17-5p-SMOC2 axis regulated TGFβ and NF-κB signaling activation in Ang II-induced podocytes. SMOC2 regulated cell viability, apoptosis and extracellular matrix (ECM) deposition in Ang II-induced podocytes via TGFβ signaling, and SMOC2 regulated inflammation in Ang II-induced podocytes through NF-κB signaling. Overall, our study demonstrated that miRNA-17-5p restrained the dysfunction of Ang-II induced podocytes by suppressing SMOC2 via the NF-κB and TGFβ signaling.
Collapse
Affiliation(s)
- Mingzhu Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Mengqiu Yi
- Intensive Care Unit, Songyuan Jilin Oilfield Hospital, Jilin, China
| | - Na Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
5
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Glineur SF, Hanon E, Dremier S, Snelling S, Berteau C, De Ron P, Nogueira da Costa A. Assessment of a Urinary Kidney MicroRNA Panel as Potential Nephron Segment-Specific Biomarkers of Subacute Renal Toxicity in Preclinical Rat Models. Toxicol Sci 2019; 166:409-419. [PMID: 30169741 DOI: 10.1093/toxsci/kfy213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Drug-induced kidney injury (DIKI) remains a significant concern during drug development. Whereas FDA-endorsed urinary protein biomarkers encounter limitations including the lack of translatability, there is a considerable interest surrounding the application of microRNAs (miRNAs) in the renal biomarker space. Current knowledge about the value of these novel biomarkers for subacute preclinical rodent studies is still sparse. In this work, Wistar rats were treated with three nephrotoxic compounds-cisplatin (CIS, proximal tubule, 2.5 mg/kg, intraperitoneal [i.p.]), puromycin (PUR, glomerulus, 20/10 mg/kg, i.p.) and N-phenylanthranylic acid (NPAA, collecting ducts, 500 mg/kg, per os)-for up to 28 days to evaluate the performance of a panel of 68 urinary miRNAs as potential nephron segment-specific biomarkers. Out of these 68 kidney injury associated-miRNAs, our selection strategy ultimately revealed rno-miR-34c-5p significantly dysregulated after CIS single administration, and rno-miR-335 and rno-miR-155-5p significantly dysregulated after PUR treatment. In contrast, NPAA daily administration strongly altered the expression profile of 28 miRNAs, with rno-miR-210-3p displaying the most robust changes. A thorough evaluation showed that these miRNA candidates could complement urinary protein biomarkers to detect CIS- or PUR-induced kidney injury in a subacute setting, with a mechanistic (based on rno-miR-34c-5p) and/or a kidney injury detection potential. Our results also provide the first evidence that urinary miRNAs could enhance the detection of collecting duct damage. Overall, these data improve our understanding of the utility of urinary miRNAs as DIKI biomarkers in a subacute DIKI preclinical setting and support the value of using urinary biomarker panels comprising proteins and miRNAs.
Collapse
Affiliation(s)
- Stéphanie F Glineur
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Medvet, AML Lab BVBA, E. Vloorstraat 9, B-2020 Antwerpen, Belgium
| | - Etienne Hanon
- Bio Data Analysis, New Medicines Therapeutics, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium
| | - Sarah Dremier
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Head HTS & In Vitro Pharmacology, Ogeda SA, 47 Rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sara Snelling
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Immunology, Abzena, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Caroline Berteau
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, LS9 7FT, UK
| | - Pierrette De Ron
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
7
|
Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2017; 243:129-136. [PMID: 29264947 DOI: 10.1177/1535370217749472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury, characterized by sharply decreased renal function, is a common and important complication in hospitalized patients. The pathological mechanism of acute kidney injury is mainly related to immune activation and inflammation. Given the high morbidity and mortality rates of hospitalized patients with acute kidney injury, the identification of biomarkers useful for assessing risk, making an early diagnosis, evaluating the prognosis, and classifying the injury severity is urgently needed. Furthermore, investigation into the development of acute kidney injury and potential therapeutic targets is required. While microRNA was first discovered in Caenorhabditis elegans, Gary Ruvkun's laboratory identified the first microRNA target gene. Together, these two important findings confirmed the existence of a novel post-transcriptional gene regulatory mechanism. Considering that serum creatinine tests often fail in the early detection of AKI, testing for microRNAs as early diagnostic biomarkers has shown great potential. Numerous studies have identified microRNAs that can serve as biomarkers for the detection of acute kidney injury. In addition, as microRNAs can control the expression of multiple proteins through hundreds or thousands of targets influencing multiple signaling pathways, the number of studies on the functions of microRNAs in AKI progression is increasing. Here, we mainly focus on research into microRNAs as biomarkers and explorations of their functions in acute kidney injury. Impact statement Firstly, we have discussed the potential advantages and limitations of miRNA as biomarkers. Secondly, we have summarized the role of miRNA in the progress of AKI. Finally, we have made a vision of miRNA's potential and advantages as therapeutic target intervention AKI.
Collapse
Affiliation(s)
- Yan-Fang Zou
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| |
Collapse
|
8
|
Harrill AH, Lin H, Tobacyk J, Seely JC. Mouse population-based evaluation of urinary protein and miRNA biomarker performance associated with cisplatin renal injury. Exp Biol Med (Maywood) 2017; 243:237-247. [PMID: 29110506 DOI: 10.1177/1535370217740854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Discovery and qualification of novel biomarkers with improved specificity and sensitivity for detection of xenobiotic-induced injuries is an area of active research across multiple sectors. However, the majority of efforts in this arena have used genetically limited rodent stocks that lack variability in xenobiotic responses inherent to genetically heterogeneous human populations. In this study, genetically diverse Diversity Outbred (DO) mice were used as a surrogate for human clinical populations to investigate performance of urinary kidney biomarkers against classical preclinical kidney injury biomarkers (blood urea nitrogen [BUN] and serum creatinine). In this study, cisplatin was used as a paradigm kidney toxicant, with female adult DO mice exposed to a single injection (5 mg/kg) of cisplatin or vehicle and necropsied 72 h post-exposure and 18 h following overnight urine collection. Interindividual variability in kidney toxicity was observed, with DO mice experiencing either no tubule cell necrosis or minimal-mild necrosis. A panel of urinary protein biomarkers and profiled miRNAs were assessed by receiver-operating characteristic curves as to their ability to distinguish non-responder versus responder animals, as defined by histopathological evidence of renal tubule cell necrosis. A surprising outcome of these studies was that BUN was elevated alongside of urinary miRNA and protein biomarkers in animals with grade 2 proximal tubular cell necrosis; but not elevated with grade 1 necrosis. These studies demonstrate a novel approach for using a rodent population to better assess sensitivity of candidate biomarkers, especially for proposed clinical applications. Impact statement Recent studies have indicated that several urinary proteins and miRNA species may be suitable as biomarkers for acute kidney injury. A major focus on biomarker qualification is demonstrating improved specificity and sensitivity over gold standard tests. In this study, a mouse population model, Diversity Outbred mice, was used to demonstrate that neither the urinary protein markers nor the miRNA species assayed in urine could reliably detect low severity kidney injury better than blood urea nitrogen. This study has implications for use of these biomarkers in the clinic, where interindividual heterogeneity is present within patient populations and for which the underlying tissue pathology may not be known.
Collapse
Affiliation(s)
- Alison H Harrill
- 1 Department of Environmental and Occupational Health, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,2 Department of Pharmacology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,3 Division of the National Toxicology Program, the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Haixia Lin
- 1 Department of Environmental and Occupational Health, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Julia Tobacyk
- 2 Department of Pharmacology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John C Seely
- 4 Experimental Pathology Laboratories, Inc., Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Effects of a 28-day dietary co-exposure to melamine and cyanuric acid on the levels of serum microRNAs in male and female Fisher 344 rats. Food Chem Toxicol 2016; 98:11-16. [PMID: 27621052 DOI: 10.1016/j.fct.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
We showed previously that a 28-day combined dietary exposure to melamine and cyanuric acid (MEL&CYA) induced kidney lesions in NCTR Fisher 344 (F344) rats. Histopathological changes were significant in females dosed with ≥240 ppm MEL&CYA and in males dosed with ≥180 ppm MEL&CYA; however, the nephrotoxicity biomarkers blood urea nitrogen (BUN) and serum creatinine (SCr) were increased only by ≥240 ppm MEL&CYA. The serum miRNome has been reported to reflect toxicity of several organs, including the kidney. Here, we compared the dose-response of alterations in serum miRNAs to those of BUN, SCr, and kidney histopathology in rats co-exposed to MEL&CYA. The serum miRNome of male F344 rats dosed with 0, 180, or 240 ppm MEL&CYA was screened using quantitative real-time RT-PCR (qRT-PCR) and the levels of selected serum miRNAs were analyzed further in both sexes over the full dose range. The levels of several miRNAs were significantly reduced in rats treated with 240 ppm MEL&CYA versus control. In addition, miR-128-3p and miR-210-3p were decreased in males treated with 180pm MEL&CYA, a dose at which the levels of BUN and SCr were not yet affected by treatment. These data suggest that the serum miRNome is affected by nephrotoxic doses of MEL&CYA in male and female rats.
Collapse
|
10
|
Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch Toxicol 2016; 90:2959-2978. [PMID: 27585665 DOI: 10.1007/s00204-016-1828-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical mediators of many cellular and developmental processes and have been implicated in different human diseases. Since the observation of extracellular miRNAs present in various biofluids, much attention and excitement have been garnered toward understanding the functional roles of these circulating extracellular miRNAs and establishing their potential use as noninvasive diagnostic biomarkers. Here, we will review the current state of miRNA biomarkers for many human diseases, including their emerging use in toxicological applications, and discuss the current challenges in the field, with an emphasis on technical issues that often hinder discovery-based miRNA biomarker studies.
Collapse
|
11
|
Pavkovic M, Robinson-Cohen C, Chua AS, Nicoara O, Cárdenas-González M, Bijol V, Ramachandran K, Hampson L, Pirmohamed M, Antoine DJ, Frendl G, Himmelfarb J, Waikar SS, Vaidya VS. Detection of Drug-Induced Acute Kidney Injury in Humans Using Urinary KIM-1, miR-21, -200c, and -423. Toxicol Sci 2016; 152:205-13. [PMID: 27122240 PMCID: PMC5009468 DOI: 10.1093/toxsci/kfw077] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Drug-induced acute kidney injury (AKI) is often encountered in hospitalized patients. Although serum creatinine (SCr) is still routinely used for assessing AKI, it is known to be insensitive and nonspecific. Therefore, our objective was to evaluate kidney injury molecule 1 (KIM-1) in conjunction with microRNA (miR)-21, -200c, and -423 as urinary biomarkers for drug-induced AKI in humans. In a cross-sectional cohort of patients (n = 135) with acetaminophen (APAP) overdose, all 4 biomarkers were significantly (P < .004) higher not only in APAP-overdosed (OD) patients with AKI (based on SCr increase) but also in APAP-OD patients without clinical diagnosis of AKI compared with healthy volunteers. In a longitudinal cohort of patients with malignant mesothelioma receiving intraoperative cisplatin (Cp) therapy (n = 108) the 4 biomarkers increased significantly (P < .0014) over time after Cp administration, but could not be used to distinguish patients with or without AKI. Evidence for human proximal tubular epithelial cells (HPTECs) being the source of miRNAs in urine was obtained first, by in situ hybridization based confirmation of increase in miR-21 expression in the kidney sections of AKI patients and second, by increased levels of miR-21, -200c, and -423 in the medium of cultured HPTECs treated with Cp and 4-aminophenol (APAP degradation product). Target prediction analysis revealed 1102 mRNA targets of miR-21, -200c, and -423 that are associated with pathways perturbed in diverse pathological kidney conditions. In summary, we report noninvasive detection of AKI in humans by combining the sensitivity of KIM-1 along with mechanistic potentials of miR-21, -200c, and -423.
Collapse
Affiliation(s)
- Mira Pavkovic
- *Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | - Alicia S Chua
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Oana Nicoara
- Boston Children's Hospital, Nephrology, Boston, Massachusetts 02115
| | | | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | - Lucy Hampson
- Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Munir Pirmohamed
- Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Daniel J Antoine
- Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Gyorgy Frendl
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, Seattle, Washington 98195
| | - Sushrut S Waikar
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Vishal S Vaidya
- *Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 Harvard School of Public Health, Environmental Health, Boston, MA, 02115
| |
Collapse
|
12
|
Abstract
Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach toward DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/-2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage.
Collapse
Affiliation(s)
- Mira Pavkovic
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
13
|
Pavkovic M, Riefke B, Frisk AL, Gröticke I, Ellinger-Ziegelbauer H. Glomerulonephritis-induced changes in kidney gene expression in rats. GENOMICS DATA 2015; 6:81-2. [PMID: 26697341 PMCID: PMC4664719 DOI: 10.1016/j.gdata.2015.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 11/01/2022]
Abstract
We investigated a glomerulonephritis (GN) model in rats induced by nephrotoxic serum (NTS) which contains antibodies against the glomerular basement membrane (GBM). The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003[2]). Male Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats were dosed once with 1, 2.5 and 5 ml/kg nephrotoxic serum (NTS) or 1.5 and 5 ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14 days. To obtain insight into molecular processes during GN pathogenesis, mRNA expression was investigated in WKY and SD kidneys using Affymetrix's GeneChip Rat genome 230_2.0 arrays (GSE64265). The immunopathological processes during GN are still not fully understood and likely involve both innate and adaptive immunity. In the present study, several hundred mRNAs were found deregulated, which functionally were mostly associated with inflammation and regeneration. The β-chain of the major histocompatibility complex class II RT1.B (Rt1-Bb) and complement component 6 (C6) were identified as two mRNAs differentially expressed between WKY and SD rat strains which could be related to known different susceptibilities to NTS of different rat strains; both were increased in WKY and decreased in SD rats (Pavkovic et al., 2015 [1]). Increased Rt1-Bb expression in WKY rats could indicate a stronger and more persistent cellular reaction of the adaptive immune system in this strain, in line with findings indicating adaptive immune reactions during GN. The complement cascade is also known to be essential for GN development, especially terminal cascade products like C6.
Collapse
Affiliation(s)
- Mira Pavkovic
- Investigational Toxicology, GDD-GED-Toxicology, Bayer Pharma AG, 42096 Wuppertal, Germany ; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, 02115 Boston, MA, United States
| | - Björn Riefke
- Investigational Toxicology, GDD-GED-Toxicology, Bayer Pharma AG, 42096 Wuppertal, Germany
| | - Anna-Lena Frisk
- Pathology, GDD-GED-Toxicology, Bayer Pharma AG, 13353 Berlin, Germany
| | - Ina Gröticke
- Indication Expansion, GDD-GTRG-Cross Indication Platform, Bayer Pharma AG, 13353 Berlin, Germany
| | | |
Collapse
|
14
|
Church RJ, Otieno M, McDuffie JE, Singh B, Sonee M, Hall L, Watkins PB, Ellinger-Ziegelbauer H, Harrill AH. Beyond miR-122: Identification of MicroRNA Alterations in Blood During a Time Course of Hepatobiliary Injury and Biliary Hyperplasia in Rats. Toxicol Sci 2015; 150:3-14. [PMID: 26614776 DOI: 10.1093/toxsci/kfv260] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Identification of circulating microRNAs for the diagnosis of liver injury and as an indicator of underlying pathology has been the subject of recent investigations. While several studies have been conducted, with particular emphasis on miR-122, the timing of miRNA release into the circulation and anchoring to tissue pathology has not been systematically evaluated. In this study, miRNA profiling was conducted over a time course of hepatobiliary injury and repair using alpha-naphthylisothiocyanate (ANIT) and a proprietary compound, FP004BA. ANIT administration (50 mg/kg) to rats caused significant biliary epithelial cell and hepatocellular necrosis between 24 and 72 h, followed by resolution and progression to biliary hyperplasia by 120 h which was associated with miRNA release into the blood. FP004BA (100 mg/kg) was used to confirm associations of miRNA along a time course with similar hepatic pathology to ANIT. Treatment with ANIT or FP004BA resulted in significant alterations of overlapping miRNAs during the early and peak injury phases. In addition to well-characterized liver injury markers miR-122-5p and miR-192-5p, multiple members of the 200 family and the 101 family along with miR-802-5p and miR-30d-5p were consistently elevated during hepatobiliary injury caused by both toxicants, suggesting that these species may be potential biomarker candidates for hepatobiliary injury. After 14 days of dosing with 4BA, miR-182-5p remained elevated-while miR-122-5p and miR-192-5p had returned to baseline-suggesting that miR-182-5p may have added utility to monitor for hepatobiliary injury in the repair phases when there remains histological evidence of ongoing cellular injury.
Collapse
Affiliation(s)
- Rachel J Church
- *Hamner-UNC Institute for Drug Safety Sciences, RTP, North Carolina 27709
| | - Monicah Otieno
- Preclinical Development and Safety, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477
| | - James Eric McDuffie
- Preclinical Development and Safety, Janssen Research & Development, LLC, San Diego, California 92121
| | - Bhanu Singh
- Preclinical Development and Safety, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477
| | - Manisha Sonee
- Preclinical Development and Safety, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477
| | - LeRoy Hall
- Preclinical Development and Safety, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477
| | - Paul B Watkins
- *Hamner-UNC Institute for Drug Safety Sciences, RTP, North Carolina 27709
| | | | - Alison H Harrill
- *Hamner-UNC Institute for Drug Safety Sciences, RTP, North Carolina 27709; Department of Environmental and Occupational Health, The University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
15
|
Nassirpour R, Homer BL, Mathur S, Li Y, Li Z, Brown T, Carraher D, Warneke J, Bailey S, Percival K, O'Neil SP, Whiteley LO. Identification of Promising Urinary MicroRNA Biomarkers in Two Rat Models of Glomerular Injury. Toxicol Sci 2015; 148:35-47. [PMID: 26253709 DOI: 10.1093/toxsci/kfv167] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate protein levels posttranscriptionally. miRNAs play important regulatory roles in many cellular processes and have been implicated in several diseases. Recent studies have reported significant levels of miRNAs in a variety of body fluids, raising the possibility that miRNAs could serve as useful biomarkers. Here, changes in miRNA expression patterns are described in 2 different rodent models of glomerular injury (acute puromycin aminonucleoside nephropathy and passive Heymann nephritis). By employing 2 different modes of glomerular insult, oxidative stress and immune-mediated toxicity, miRNA changes in both isolated glomeruli as well as urine specimens allow for identification of urinary miRNA biomarkers that are suggestive of drug-induced injury specifically to the glomerulus. Subsets of glomerular urinary miRNAs associated with these different modes of glomerular toxicity seem to be dependent on the mechanism of the induced injury, while 9 miRNAs that changed early in both glomerular and urine specimens were common to both studies. We further show that the miRNAs identified as mechanism-specific early glomerular injury biomarkers target key pathways and transcripts relevant to the type of insult, while the insult-independent changes might serve as ideal glomerular injury biomarkers.
Collapse
Affiliation(s)
| | - Bruce L Homer
- *Drug Safety, Pfizer Worldwide Research and Development
| | - Sachin Mathur
- Business Technology, Pfizer Research and Development, Andover, Massachusetts 01810; and
| | - Yizheng Li
- Business Technology, Pfizer Research and Development, Andover, Massachusetts 01810; and
| | - Zhonghan Li
- *Drug Safety, Pfizer Worldwide Research and Development
| | - Tom Brown
- Drug Safety, Pfizer Research and Development, Groton, Connecticut 06340
| | | | - James Warneke
- *Drug Safety, Pfizer Worldwide Research and Development
| | - Steven Bailey
- *Drug Safety, Pfizer Worldwide Research and Development
| | | | | | | |
Collapse
|