1
|
Nordin A, Zambanini G, Enar Jonasson M, Weiss T, van de Grift Y, Pagella P, Cantù C. Construction of an atlas of transcription factor binding during mouse development identifies popular regulatory regions. Development 2025; 152:dev204311. [PMID: 40013513 DOI: 10.1242/dev.204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Gene regulators physically associate with the genome, in a combinatorial fashion, to drive tissue-specific gene expression. Uncovering the genome-wide activity of all gene regulators across tissues is therefore needed to understand gene regulation during development. Here, we take a first step towards this goal. Using CUT&RUN, we systematically mapped genome-wide binding profiles of key transcription factors and co-factors that mediate ontogenetically relevant signaling pathways in select mouse tissues at two developmental stages. Computation of the datasets unveiled tissue- and time-specific activity for each gene regulator. We identified 'popular' regulatory regions that are bound by a multitude of regulators, which tend to be more evolutionarily conserved. Consistently, they lie near the transcription start site of genes for which dysregulation results in early embryonic lethality. Moreover, the human homologs of these regions are similarly bound by many gene regulators and are highly conserved, indicating a retained relevance for human development. This work constitutes a decisive step towards understanding how the genome is simultaneously read and used by gene regulators in a holistic fashion to drive embryonic development.
Collapse
Affiliation(s)
- Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Mattias Enar Jonasson
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Tamina Weiss
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Yorick van de Grift
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
- Science for Life Laboratory - SciLifeLab, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
2
|
Liang T, Liu S, Dang B, Luan X, Guo Y, Steimbach RR, Hu J, Lu L, Yue P, Wang R, Zheng M, Gao J, Yin X, Chen X. Multimechanism biological profiling of tetrahydro-β-carboline analogues as selective HDAC6 inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 275:116624. [PMID: 38925015 DOI: 10.1016/j.ejmech.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
With the intensive research on the pathogenesis of Alzheimer's disease (AD), inhibition of HDAC6 appears to be a potential therapeutic approach for AD. In this paper, a series of tetrahydro-β-carboline derivatives with hydroxamic acid group were fast synthesized. Among all, the most potent 15 selectively inhibited HDAC6 with IC50 of 15.2 nM and markedly increased acetylated alpha-tubulin levels. In cellular assay, 15 showed excellent neurotrophic effect by increasing the expression of GAP43 and Beta-3 tubulin markers. Besides, 15 showed neuroprotective effects in PC12 or SH-SY5Y cells against H2O2 and 6-OHDA injury through activation of Nrf2, catalase and Prx II, and significantly reduced H2O2-induced reactive oxygen species (ROS) production. In vivo, 15 significantly attenuated zebrafish anxiety-like behaviour and memory deficits in a SCOP-induced zebrafish model of AD. To sum up, multifunctional 15 might be a good lead to develop novel tetrahydrocarboline-based agents for the treatment of AD.
Collapse
Affiliation(s)
- Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Shiru Liu
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Yifan Guo
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Long Lu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Peiyu Yue
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Ruotian Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Meng Zheng
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xia Yin
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
3
|
Henriquez JE, Badwaik VD, Bianchi E, Chen W, Corvaro M, LaRocca J, Lunsman TD, Zu C, Johnson KJ. From Pipeline to Plant Protection Products: Using New Approach Methodologies (NAMs) in Agrochemical Safety Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10710-10724. [PMID: 38688008 DOI: 10.1021/acs.jafc.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human population will be approximately 9.7 billion by 2050, and food security has been identified as one of the key issues facing the global population. Agrochemicals are an important tool available to farmers that enable high crop yields and continued access to healthy foods, but the average new agrochemical active ingredient takes more than ten years, 350 million dollars, and 20,000 animals to develop and register. The time, monetary, and animal costs incentivize the use of New Approach Methodologies (NAMs) in early-stage screening to prioritize chemical candidates. This review outlines NAMs that are currently available or can be adapted for use in early-stage screening agrochemical programs. It covers new in vitro screens that are on the horizon in key areas of regulatory concern. Overall, early-stage screening with NAMs enables the prioritization of development for agrochemicals without human and environmental health concerns through a more directed, agile, and iterative development program before animal-based regulatory testing is even considered.
Collapse
Affiliation(s)
| | - Vivek D Badwaik
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | - Chengli Zu
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Kamin J Johnson
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| |
Collapse
|
4
|
Wu S, Ellison C, Naciff J, Karb M, Obringer C, Yan G, Shan Y, Smith A, Wang X, Daston GP. Structure-activity relationship read-across and transcriptomics for branched carboxylic acids. Toxicol Sci 2023; 191:343-356. [PMID: 36583546 DOI: 10.1093/toxsci/kfac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data, and physiologically based pharmacokinetic (PBPK) models to support read-across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid, 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid, 2-hexyldecanoic acid, 2-propylnonanoic acid (PNA), dipentyl acetic acid or 2-pentylheptanoic acid, octanoic acid (a straight chain alkyl acid), and 2-ethylhexanol. Transcriptomics was evaluated in 4 cell types (A549, HepG2, MCF7, and iCell cardiomyocytes) 6 h after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that 2- or 3-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read-across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provide a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data were utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read-across.
Collapse
Affiliation(s)
- Shengde Wu
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Corie Ellison
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Jorge Naciff
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Michael Karb
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Cindy Obringer
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Gang Yan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Yuqing Shan
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Alex Smith
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - Xiaohong Wang
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| | - George P Daston
- Global Product Stewardship, The Procter and Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
5
|
MicroRNA-495 suppresses pre-eclampsia via activation of p53/PUMA axis. Cell Death Dis 2022; 8:132. [PMID: 35338123 PMCID: PMC8956677 DOI: 10.1038/s41420-022-00874-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Linkage between microRNAs (miRNAs) and pre-eclampsia (PE) has been documented. Here, we focused on miR-495 in PE and its underlying mechanism in regulation of trophoblast cells. Expression of miR-495, HDAC2, p53 and PUMA was determined in collected placental tissue samples. Loss- and gain-function was performed to determine the roles of miR-495, HDAC2, p53, and PUMA in biological processes of HTR8/SVneo cells and primary trophoblast cells. The relationships among miR-495, HDAC2, and p53 were pinpointed. PE patients presented with higher expression of miR-495, p53, and PUMA in placental tissues, but lower HDAC2. miR-495 negatively targeted HDAC2 expression. HDAC2 suppressed p53 expression via deacetylation. Overexpression of miR-495, p53, or PUMA inhibited biological properties of HTR8/SVneo cells and primary trophoblast cells, while opposite trends were observed in response to oe-HDAC2. In conclusion, miR-495 knockdown can suppress p53/PUMA axis by targeting HDAC2 to enhance biological behaviors of trophoblast cells, which may prevent occurrence of PE.
Collapse
|
6
|
Rodrigues DA, Roe A, Griffith D, Chonghaile TN. Advances in the Design and Development of PROTAC-mediated HDAC degradation. Curr Top Med Chem 2021; 22:408-424. [PMID: 34649488 DOI: 10.2174/1568026621666211015092047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Due to developments in modern chemistry, previously undruggable targets are becoming druggable thanks to selective degradation using the ubiquitin-proteasomal degradation system. PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules designed specifically to degrade target proteins (protein of interest, POI). They are of significant interest to industry and academia as they are highly specific and can target previously undruggable target proteins from transcription factors to enzymes. More than 15 degraders are expected to be evaluated in clinical trials by the end of 2021. Herein, we describe recent advances in the design and development of PROTAC-mediated degradation of histone deacetylases (HDACs). PROTAC-mediated degradation of HDACs can offer some significant advantages over direct inhibition, such as the use of substoichiometric doses and the potential to disrupt enzyme-independent HDAC function. Herein, we discuss the potential implications of the degradation of HDACs with HDAC knockout studies and the selection of HDAC inhibitors and E3 ligase ligands for the design of the PROTACs. The potential utility of HDAC PROTACs in various disease pathologies from cancer to inflammation to neurodegeneration is driving the interest in this field.
Collapse
Affiliation(s)
- Daniel Alencar Rodrigues
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Andrew Roe
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Darren Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin. Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin. Ireland
| |
Collapse
|
7
|
Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of egg yolk sialoglycoprotein (EYG) on osteogenesis in MC3T3-E1 cells were investigated and the DEGs (differentially expressed genes) were explored by transcriptome analysis. The results found that EYG effectively increased cell proliferation, enhanced ALP activity, promoted the secretion of extracellular matrix protein COL-I and OCN, enhanced bone mineralization activity, exhibiting good osteogenic activity. Further study of the mechanism was explored through transcriptome analysis. Transcriptome analysis showed that 123 DEGs were triggered by EYG, of which 78 genes were downregulated and 45 genes were upregulated. GO (gene ontology) analysis showed that EYG mainly caused differences in gene expression of biological processes and cell composition categories in the top 30 most enriched items. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that EYG inhibited inflammatory factors and downregulated inflammation-related pathways. The results also showed EYG regulated such genes as COL2A1, COL4A1 and COL4A2 to up-regulate pathways including ECM–receptor interaction, focal adhesion and protein digestion and absorption, enhancing the proliferation and differentiation of osteoblasts. Gene expression of COL-I, Runx2, BMP2 and β-catenin was determined by qRT-PCR for verification, which found that EYG significantly increased COL-I, Runx2, BMP2 and β-catenin gene expression, suggesting that BMP-2 mediated osteogenesis pathway was activated.
Collapse
|
8
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
9
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Paradis FH, Yan H, Huang C, Hales BF. The Murine Limb Bud in Culture as an In Vitro Teratogenicity Test System. Methods Mol Biol 2019; 1965:73-91. [PMID: 31069669 DOI: 10.1007/978-1-4939-9182-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is widespread interest today in the use of in vitro methods to study normal and abnormal development. The limb is attractive in this context since much is known about pattern formation during limb development. The murine limb bud culture technique described in this chapter was developed and refined in the 1970s. In this culture system, limb development mimics the in vivo process, although at a slower rate, where growth and cartilage differentiation lead to the formation of proximal and distal structures with an "in vivo-like" 3D shape. Uniform developmental stages are selected for assessment, exposures are controlled precisely, and the confounding influences of maternal metabolism and transport are avoided. The existence of transgenic mice with fluorescent markers for the different stages of endochondral ossification adds a further dimension to the technique by allowing striking time course observations of the developing limb. Today, limb bud cultures are used to study the roles of genes during embryogenesis and the mechanisms by which chemicals interfere with critical signalling pathways.
Collapse
Affiliation(s)
- France-Hélène Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Han Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Wang H, Cui W, Meng C, Zhang J, Li Y, Qian Y, Xing G, Zhao D, Cao S. MC1568 Enhances Histone Acetylation During Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell Reprogram 2019; 20:55-65. [PMID: 29412739 DOI: 10.1089/cell.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 μM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.
Collapse
Affiliation(s)
- Huili Wang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Wei Cui
- 2 Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Chunhua Meng
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Jun Zhang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yinxia Li
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yong Qian
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Guangdong Xing
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Dongmin Zhao
- 3 Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Shaoxian Cao
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| |
Collapse
|
12
|
Schang G, Toufaily C, Bernard DJ. HDAC inhibitors impair Fshb subunit expression in murine gonadotrope cells. J Mol Endocrinol 2019; 62:67-78. [PMID: 30481159 DOI: 10.1530/jme-18-0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Fertility is dependent on follicle-stimulating hormone (FSH), a product of gonadotrope cells of the anterior pituitary gland. Hypothalamic gonadotropin-releasing hormone (GnRH) and intra-pituitary activins are regarded as the primary drivers of FSH synthesis and secretion. Both stimulate expression of the FSH beta subunit gene (Fshb), although the underlying mechanisms of GnRH action are poorly described relative to those of the activins. There is currently no consensus on how GnRH regulates Fshb transcription, as results vary across species and between in vivo and in vitro approaches. One of the more fully developed models suggests that the murine Fshb promoter is tonically repressed by histone deacetylases (HDACs) and that GnRH relieves this repression, at least in immortalized murine gonadotrope-like cells (LβT2 and αT3-1). In contrast, we observed that the class I/II HDAC inhibitor trichostatin A (TSA) robustly inhibited basal, activin A-, and GnRH-induced Fshb mRNA expression in LβT2 cells and in primary murine pituitary cultures. Similar results were obtained with the class I specific HDAC inhibitor, entinostat, whereas two class II-specific inhibitors, MC1568 and TMP269, had no effects on Fshb expression. Collectively, these data suggest that class I HDACs are positive, not negative, regulators of Fshb expression in vitro and that, contrary to earlier reports, GnRH may not stimulate Fshb by inhibiting HDAC-mediated repression of the gene.
Collapse
Affiliation(s)
- Gauthier Schang
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Yoon S, Beermann ML, Yu B, Shao D, Bachschmid M, Miller JB. Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. J Neuromuscul Dis 2018; 5:59-73. [PMID: 29278895 PMCID: PMC5836413 DOI: 10.3233/jnd-170262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency. Objectives: To identify mechanisms of pathogenesis in MDC1A. Methods: We used immunocytochemical and molecular studies of human myogenic cells and mouse muscles—comparing laminin-α2-deficient vs. healthy controls—to identify mechanisms that regulate pathological activation of caspase in laminin-α2-deficiency. Results: In cultures of myogenic cells from MDC1A donors, p53 accumulated in a subset of nuclei and aberrant caspase activation was inhibited by the p53 inhibitor pifithrin-alpha. Also, the p53 target BBC3 (PUMA) was upregulated in both MDC1A myogenic cells and Lama2–/– mouse muscles. In addition, studies with sirtuin inhibitors and SIRT1 overexpression showed that caspase activation in MDC1A myotubes was inversely related to sirtuin deacetylase activity. Caspase activation in laminin-α2-deficiency was, however, not associated with increased phosphorylation of p38 MAPK. Conclusions: Aberrant caspase activation in MDC1A cells was mediated both by sirtuin deacetylase activity and by p53. Interventions that inhibit aberrant caspase activation by targeting sirtuin or p53 function could potentially be useful in ameliorating MDC1A.
Collapse
Affiliation(s)
- Soonsang Yoon
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mary Lou Beermann
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bryant Yu
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bachschmid
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
14
|
Feigenson M, Shull LC, Taylor EL, Camilleri ET, Riester SM, van Wijnen AJ, Bradley EW, Westendorf JJ. Histone Deacetylase 3 Deletion in Mesenchymal Progenitor Cells Hinders Long Bone Development. J Bone Miner Res 2017; 32:2453-2465. [PMID: 28782836 PMCID: PMC5732041 DOI: 10.1002/jbmr.3236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Abstract
Long bone formation is a complex process that requires precise transcriptional control of gene expression programs in mesenchymal progenitor cells. Histone deacetylases (Hdacs) coordinate chromatin structure and gene expression by enzymatically removing acetyl groups from histones and other proteins. Hdac inhibitors are used clinically to manage mood disorders, cancers, and other conditions but are teratogenic to the developing skeleton and increase fracture risk in adults. In this study, the functions of Hdac3, one of the enzymes blocked by current Hdac inhibitor therapies, in skeletal mesenchymal progenitor cells were determined. Homozygous deletion of Hdac3 in Prrx1-expressing cells prevented limb lengthening, altered pathways associated with endochondral and intramembranous bone development, caused perinatal lethality, and slowed chondrocyte and osteoblast differentiation in vitro. Transcriptomic analysis revealed that Hdac3 regulates vastly different pathways in mesenchymal cells expressing the Prxx1-Cre driver than those expressing the Col2-CreERT driver. Notably, Fgf21 was elevated in Hdac3-CKOPrrx1 limbs as well as in chondrogenic cells exposed to Hdac3 inhibitors. Elevated expression of Mmp3 and Mmp10 transcripts was also observed. In conclusion, Hdac3 regulates distinct pathways in mesenchymal cell populations and is required for mesenchymal progenitor cell differentiation and long bone development. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lomeli Carpio Shull
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Earnest L Taylor
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Carpio LR, Bradley EW, Westendorf JJ. Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connect Tissue Res 2017; 58:27-36. [PMID: 27662443 PMCID: PMC5609188 DOI: 10.1080/03008207.2016.1236088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (Hdac3) inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls matrix metalloproteinase (Mmp)-13 expression in chondrocytes. In Hdac3-depleted chondrocytes, extracellular signal-regulated kinase (Erk)1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development.
Collapse
Affiliation(s)
- Lomeli R. Carpio
- Mayo Graduate School, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Jennifer J. Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
17
|
Carpio LR, Bradley EW, McGee-Lawrence ME, Weivoda MM, Poston DD, Dudakovic A, Xu M, Tchkonia T, Kirkland JL, van Wijnen AJ, Oursler MJ, Westendorf JJ. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Sci Signal 2016; 9:ra79. [PMID: 27507649 PMCID: PMC5409103 DOI: 10.1126/scisignal.aaf3273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development.
Collapse
Affiliation(s)
- Lomeli R Carpio
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Institute of Regenerative and Reparative Medicine, Augusta University, Augusta, GA 30912, USA
| | - Megan M Weivoda
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Poston
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Creighton University, Omaha, NE 68102, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Abstract
The involvement of the epigenome in complex diseases is becoming increasingly clear and more feasible to study due to new genomic and computational technologies. Moreover, therapies altering the activities of proteins that modify and interpret the epigenome are available to treat cancers and neurological disorders. Many additional uses have been proposed for these drugs based on promising preclinical results, including in arthritis models. Understanding the effects of epigenomic drugs on the skeleton is of interest because of its importance in maintaining overall health and fitness. In this review, we summarize ongoing advancements in how one class of epigenetic modifiers, histone deacetylases (Hdacs), controls normal cartilage development and homeostasis, as well as recent work aimed at understanding the alterations in the expression and activities of these enzymes in osteoarthritis (OA). We also review recent studies utilizing Hdac inhibitors and discuss the potential therapeutic benefits and limitations of these drugs for preventing cartilage destruction in OA.
Collapse
|
19
|
Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics 2016; 8:1151-67. [PMID: 27479016 DOI: 10.2217/epi.16.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSCLC is an aggressive disease with one of the poorer prognosis among cancers. The disappointing response to chemotherapy drives the search for genetic biomarkers aimed at both attaining an earlier diagnosis and choosing the most appropriate chemotherapy. In this scenario, epigenomic markers, such as DNA methylation, histone acetylation and the expression of noncoding RNAs, have been demonstrated to be reliable for the stratification of NSCLC patients. Newest techniques with increased sensitivity and the isolation of nucleic acids from plasma may allow an early diagnosis and then monitoring the efficacy over time. However, prospective confirmatory studies are still lacking. This article presents an overview of the epigenetic markers evaluated in NSCLC and discusses the role of their real-time detection in the clinical management of the disease.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Altavilla
- Department of Human Pathology, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Romano Danesi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
20
|
Paradis FH, Hales BF. Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs. ACTA ACUST UNITED AC 2015; 104:177-83. [PMID: 26305274 DOI: 10.1002/bdrb.21149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity.
Collapse
Affiliation(s)
- France-Hélène Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|