1
|
Sweeney LM, Sterner TR. Toxicity reference values (TRVs) for force health protection: Gap identification and TRV prediction. Regul Toxicol Pharmacol 2024; 152:105685. [PMID: 39147262 DOI: 10.1016/j.yrtph.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The mission of the Force Health Protection (FHP) program of the U.S. Air Force (USAF), sustaining the readiness of warfighters, relies on determinations of acceptable levels of exposure to a wide array of substances that USAF personnel may encounter. In many cases, exposure details are limited or authoritative toxicity reference values (TRVs) are unavailable. To address some of the TRV gaps, we are integrating several approaches to generate health protective exposure guidelines. Descriptions are provided for identification of chemicals of interest for USAF FHP (467 to date), synthesis of multiple TRVs to derive Operational Exposure Limits (OpELs), and strategies for identifying and developing candidate values for provisional OpELs when authoritative TRVs are lacking. Rodent bioassay-derived long-term Derived No Effect Levels (DNELs) for workers were available only for a minority of the substances with occupational TRV gaps (19 of 84). Additional occupational TRV estimation approaches were found to be straightforward to implement: Tier 1 Occupational Exposure Bands, cheminformatics approaches (multiple linear regression and novel nearest-neighbor approaches), and empirical adjustment of short term TRVs. Risk assessors working in similar contexts may benefit from application of the resources referenced and developed in this work.
Collapse
Affiliation(s)
- Lisa M Sweeney
- UES, Inc., 4401 Dayton Xenia Road, Dayton, OH, 45432, USA.
| | - Teresa R Sterner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 2728 Q Street, Building 837, Wright-Patterson Air Force Base, OH, 45433, USA
| |
Collapse
|
2
|
Arnot JA, Toose L, Armitage JM, Sangion A, Looky A, Brown TN, Li L, Becker RA. Developing an internal threshold of toxicological concern (iTTC). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:877-884. [PMID: 36347933 PMCID: PMC9731903 DOI: 10.1038/s41370-022-00494-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures. OBJECTIVE Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures. METHODS Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal testing data for applications in human health assessment. RESULTS The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example, the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety screening and priority-setting. SIGNIFICANCE Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for multi-route and aggregate exposures.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada.
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Liisa Toose
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | | | - Alessandro Sangion
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Trevor N Brown
- ARC Arnot Research and Consulting Inc., Toronto, ON, Canada
| | - Li Li
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
3
|
Kovarich S, Cappelli CI. Use of In Silico Methods for Regulatory Toxicological Assessment of Pharmaceutical Impurities. Methods Mol Biol 2022; 2425:537-560. [PMID: 35188646 DOI: 10.1007/978-1-0716-1960-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of novel non-testing methodologies to support the toxicological assessment of drug impurities is having a growing impact in the regulatory framework for pharmaceutical development and marketed products. For DNA reactive (mutagenic) impurities specific recommendations for the use of in silico structure-based approaches (namely (Q)SAR methodologies) are provided in the ICH M7 guideline. In 2018 a draft reflection paper has been published by EMA addressing open issues in the qualification approach of non-genotoxic impurities (NGI) according to the ICH Q3A/Q3B guidelines, and proposing the use of alternative testing strategies, including TTC, (Q)SAR, read-across, and in vitro approaches, to gather impurity-specific safety information.In the present chapter we describe a workflow to perform the safety assessment of drug impurities based on non-testing in silico methodologies. The proposed approach consists of a stepwise decision scheme including three key phases: PHASE 1: assessment of bacterial mutagenicity and consequent classification of impurities according to ICH M7; PHASE 2: risk characterization of mutagenic impurities (Classes 1, 2 or 3); PHASE 3: qualification of non-mutagenic impurities (Classes 4 or 5). The proposed decision scheme offers the possibility to acquire impurity-specific data, also if testing is not feasible, and to decide on further in vitro testing, besides meeting 3R's principle.
Collapse
|
4
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020; 118:104813. [PMID: 33144077 PMCID: PMC7605856 DOI: 10.1016/j.yrtph.2020.104813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories). Review of toxicology and pharmacology information for novel therapeutic modalities. Identification of occupational hazards associated with novel therapeutic modalities. Occupational hazards and exposure risks differ across pharmaceutical modalities. Occupational exposure control banding systems are not one size fits all. Banding system variations offer benefits while enabling proper exposure controls.
Collapse
Affiliation(s)
- Jessica C Graham
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Gene Schulze
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| |
Collapse
|
6
|
Nelms MD, Patlewicz G. Derivation of New Threshold of Toxicological Concern Values for Exposure via Inhalation for Environmentally-Relevant Chemicals. FRONTIERS IN TOXICOLOGY 2020; 2:580347. [PMID: 35296122 PMCID: PMC8915872 DOI: 10.3389/ftox.2020.580347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mark D. Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- *Correspondence: Grace Patlewicz
| |
Collapse
|
7
|
An interim internal Threshold of Toxicologic Concern (iTTC) for chemicals in consumer products, with support from an automated assessment of ToxCast™ dose response data. Regul Toxicol Pharmacol 2020; 114:104656. [DOI: 10.1016/j.yrtph.2020.104656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
|
8
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández-Jerez AF, Hougaard Bennekou S, Koutsoumanis KP, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Gundert-Remy U, Kass GEN, Kleiner J, Rossi AM, Serafimova R, Reilly L, Wallace HM. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J 2019; 17:e05708. [PMID: 32626331 PMCID: PMC7009090 DOI: 10.2903/j.efsa.2019.5708] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 μg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 μg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.
Collapse
|
9
|
Chebekoue SF, Krishnan K. Derivation of internal dose-based thresholds of toxicological concern for occupational inhalation exposure to systemically acting organic chemicals. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:308-319. [PMID: 30676257 DOI: 10.1080/15459624.2019.1568445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed at deriving occupational thresholds of toxicological concern for inhalation exposure to systemically-acting organic chemicals using predicted internal doses. The latter were also used to evaluate the quantitative relationship between occupational exposure limit and internal dose. Three internal dose measures were identified for investigation: (i) the daily area under the venous blood concentration vs. time curve, (ii) the daily rate of the amount of parent chemical metabolized, and (iii) the maximum venous blood concentration at the end of an 8-hr work shift. A dataset of 276 organic chemicals with 8-hr threshold limit values-time-weighted average was compiled along with their molecular structure and Cramer classes (Class I: low toxicity, Class II: intermediate toxicity, Class III: suggestive of significant toxicity). Using a human physiologically-based pharmacokinetic model, the three identified dose metrics were predicted for an 8-hr occupational inhalation exposure to the threshold limit value for each chemical. Distributional analyses of the predicted dose metrics were performed to identify the percentile values corresponding to the occupational thresholds of toxicological concern. Also, simple linear regression analyses were performed to evaluate the relationship between the 8-hr threshold limit value and each of the predicted dose metrics, respectively. No threshold of toxicological concern could be derived for class II due to few chemicals. Based on the daily rate of the amount of parent chemical metabolized, the proposed internal dose-based occupational thresholds of toxicological concern were 5.61 × 10-2 and 9 × 10-4 mmol/d at the 10th percentile level for classes I and III, respectively, while they were 4.55 × 10-1 and 8.5 × 10-3 mmol/d at the 25th percentile level. Even though high and significant correlations were observed between the 8-hr threshold limit values and the predicted dose metrics, the one with the rate of the amount of chemical metabolized was remarkable regardless of the Cramer class (r2 = 0.81; n = 276). The proposed internal dose-based occupational thresholds of toxicological concern are potentially useful for screening-level assessments as well as prioritization within an integrated occupational risk assessment framework.
Collapse
Affiliation(s)
- Sandrine F Chebekoue
- a École de Santé Publique de l'Université de Montréal (ESPUM) , Montréal , Québec , Canada
| | - Kannan Krishnan
- a École de Santé Publique de l'Université de Montréal (ESPUM) , Montréal , Québec , Canada
- b Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) , Montréal , Québec , Canada
| |
Collapse
|
10
|
Chebekoue SF, Krishnan K. A framework for application of quantitative property-property relationships (QPPRs) in physiologically based pharmacokinetic (PBPK) models for high-throughput prediction of internal dose of inhaled organic chemicals. CHEMOSPHERE 2019; 215:634-646. [PMID: 30347358 DOI: 10.1016/j.chemosphere.2018.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
New generation of toxicological tests and assessment strategies require validated toxicokinetic data or models that are lacking for most chemicals. This study aimed at developing a quantitative property-property relationship (QPPR)-based human physiologically based pharmacokinetic (PBPK) modeling framework for high-throughput predictions of inhalation toxicokinetics of organic chemicals. A PBPK model was parameterized with QPPR-derived values for hepatic clearance (CLh) and partition coefficients (P) [blood:air (Pba) and tissue:air (Pta) and tissue:blood (Ptb)]. The model was initially applied to an evaluation dataset of 40 organic chemicals in the applicability domain, and then to an expanded dataset of 249 organic chemicals from diverse chemical classes. 'Batch' analyses were performed for rapid assessments of hundreds of chemicals. The simulations of inhalation toxicokinetics following an 8-h exposure to 1 ppm of each chemical were successful. The mean ratios of their predicted-to-experimental values were within a factor of 1.36-2.36 for Ptb and 1.18 for CLh, for 80% of the chemicals in the evaluation dataset. The predicted 24-h area under the venous blood concentration-time curve (AUC24) values were within the predicted envelopes obtained while using experimental values of Pba and considering either no or maximal hepatic extraction. The reliability analysis (based on combined sensitivity and uncertainty analyses) indicated that AUC24 predictions for 55% of the expanded dataset were moderately to highly reliable, with 46% exhibiting highly reliable values. Overall, the modeling framework suggests that molecular structure and chemical properties can together be effectively used to obtain first-cut estimates of the toxicokinetics of data-poor organic chemicals for screening and prioritization purposes.
Collapse
Affiliation(s)
- Sandrine F Chebekoue
- École de Santé Publique de l'Université de Montréal (ESPUM), Montréal, Québec, Canada.
| | - Kannan Krishnan
- École de Santé Publique de l'Université de Montréal (ESPUM), Montréal, Québec, Canada; Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada.
| |
Collapse
|