1
|
Stanic B, Kokai D, Opacic M, Pogrmic-Majkic K, Andric N. Transcriptome-centric approach to the derivation of adverse outcome pathway networks of vascular dysfunction after long-term low-level exposure of human endothelial cells to dibutyl phthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174918. [PMID: 39038667 DOI: 10.1016/j.scitotenv.2024.174918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
2
|
Chandrakanth A, Firdous S, Vasantharekha R, Santosh W, Seetharaman B. Exploring the Effects of Endocrine-Disrupting Chemicals and miRNA Expression in the Pathogenesis of Endometriosis by Unveiling the Pathways: a Systematic Review. Reprod Sci 2024; 31:932-941. [PMID: 38036864 DOI: 10.1007/s43032-023-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Endometriosis, characterized by endometrial-like mucosal tissue outside the uterine cavity, is a reproductive disorder afflicting about 10% of women within the reproductive age. The pathogenesis of endometriosis has been attributed to factors like genetics, environmental particles, and hormones. A comprehensive review of studies from July 2010 to July 2023 across multiple databases was done to aid in a better understanding of the same. The investigation focused on studies delineating the correlation between endocrine disruptors, microRNAs, and endometriosis. To optimize the search scope, keywords and subject headings were used as search terms. Then, two authors rigorously assessed studies using criteria, selecting 27 studies from various databases. Notably, dioxins, organochlorine pesticides, and polychlorinated biphenyls exhibited a solid connection for endometriosis, while bisphenol A and phthalates yielded conflicting results. The heightened presence of bisphenol A, polychlorinated biphenyls, and phthalates was linked to altered gene expression, including genes like AKR1B10, AKR1C3, and FAM49B. MicroRNAs like miRNA-31, miRNA-144, and miRNA-145 emerged as vital factors in the onset of endometriosis and progression. Furthermore, elevated expression of miR-1304-3p, miR-544, and miR-3684 and reduced expression of miR-3935 and miR-4427 exert substantial influence on signaling pathways like NF-κB, MAPK, and Wnt/β-catenin. Currently, literature shows an independent link between endocrine disruptor exposure and endometriosis and between microRNA dysregulation and endometriosis. However, research lacks the combination of all three factors. The review delves into the effects of endocrine disruptors and microRNAs on the pathogenesis of endometriosis to improve our understanding of the disorder and in finding therapies.
Collapse
Affiliation(s)
- Akshaya Chandrakanth
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sana Firdous
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ramasamy Vasantharekha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Winkins Santosh
- P.G. & Research Department of Advanced Zoology and Biotechnology, Government College for Men, Nandanam, Chennai, Tamil Nadu, India
| | - Barathi Seetharaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Zhang J, Zhou K, Cheng R, Yang M, Shen X, Luo X, Xu L. Maternal Perinatal Exposure to Dibutyl Phthalate Promotes Ovarian Dysfunction in Adult Female Offspring via Downregulation of TGF-β2 and TGF-β3. Reprod Sci 2022; 29:2401-2413. [PMID: 35028925 DOI: 10.1007/s43032-021-00785-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
Maternal exposure to dibutyl phthalate (DBP) may result in ovarian dysfunction in female offspring. However, the underlying mechanisms remain elusive. Pregnant Sprague-Dawley rats were intraperitoneally injected with different doses of DBP, estradiol, and corn oil from gestational day 7 until the end of lactation. The reproductive characteristics, mRNA, and protein expression of ovaries for the adult female offspring were compared. KGN cells were cultured in vitro with DBP, estrogen receptor antagonist, or ALK-5 inhibitor. Genes, proteins, estradiol, and progesterone expressed by KGN, cell proliferation, and apoptosis were measured respectively. Maternal perinatal exposure to DBP induced prolonged estrous period, increased secondary follicles, significant decreased mRNA, and protein levels of TGF-β2, TGF-β3, and TGF-βRII in ovaries of the adult female offspring, but none difference for serum levels of sex hormones, ovarian TGF-β1, and estrogen receptor. The mRNA levels of LHR, FSHR, and CYP19a in ovaries were also decreased. DBP might decrease the mRNA of TGF-β2, TGF-β3, and TGF-βR II of KGN. DBP can inhibit the mRNA of CYP19 at 24 h, which might be blocked by the estrogen receptor antagonist, whose effects were attenuated at 48 h. DBP combined with FSH might time-dependently regulate the gene expression of TGF-βR II, inhibitory at 24 h, but stimulative at 48 h, which could be blocked by the ALK5 inhibitor. However, the protein expressed by KGN was not influenced by DBP. DBP stimulated the proliferation of KGN at 24 h, which could be blocked by estrogen receptor antagonist, but attenuated at 48 h. The progesterone in culture medium secreted by KGN was decreased by DBP at 24 h. Maternal perinatal exposure to DBP induced decreased gene expression of TGF-β signaling and functional proteins in ovaries of the adult female offspring. Molecular cross-talk between estrogen receptor and TGF-β signaling pathway may play role in the mechanism of granulosa dysfunction induced by DBP.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Kunyan Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ran Cheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Meina Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoyang Shen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaoyan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liangzhi Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Chengdu, Sichuan, People's Republic of China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
4
|
Panagiotou EM, Ojasalo V, Damdimopoulou P. Phthalates, ovarian function and fertility in adulthood. Best Pract Res Clin Endocrinol Metab 2021; 35:101552. [PMID: 34238683 DOI: 10.1016/j.beem.2021.101552] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phthalates are a family of high-production volume industrial chemicals used in the manufacture of plastics. Some phthalates are regulated as endocrine disrupting chemicals (EDCs) and reproductive toxicants based on adverse effects in the male. Potential effects in females are less understood although exposure levels can be higher in women compared to men. Here, we review the literature on the effects of phthalate exposures in adulthood on ovarian function and fertility in women. Experimental studies using cell cultures and rodents combined with human evidence from epidemiological studies suggest that phthalates pose a hazard to ovaries. Phthalates can disrupt follicle growth pattern, increase oxidative stress and cause follicle death. These effects could lead to infertility, faster depletion of ovarian reserve, and earlier reproductive senescence. However, more studies using more realistic exposure levels will be needed to properly assess the risks in women.
Collapse
Affiliation(s)
- Eleftheria M Panagiotou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden.
| | - Venla Ojasalo
- Institute of Biomedicine, University of Turku, Turku FI-20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden.
| |
Collapse
|
5
|
Chou Y, Tzeng C. The impact of phthalate on reproductive function in women with endometriosis. Reprod Med Biol 2021; 20:159-168. [PMID: 33850448 PMCID: PMC8022091 DOI: 10.1002/rmb2.12364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endometriosis is a common gynecological condition in which stromal or glandular epithelium is implanted in extrauterine locations. Endometriosis causes detrimental effects on the granulosa cells, and phthalate interferes with the biological and reproductive function of endometrial cells at a molecular level. METHODS This article retrospectively reviewed the studies on phthalate exposure and its relationship with endometriosis. A literature search was performed for scientific articles using the keywords "phthalate and endometriosis," "endometriosis and granulosa cells," "phthalate and granulosa cells," and "phthalates and endometrial cells." RESULTS Endometriosis can affect cytokine production, steroidogenesis, cell cycle progression, expression of estrogen receptor-α (ER-α)/progesterone receptor (PR), and cause endoplasmic reticulum stress, senescence, apoptosis, autophagy, and oxidative stress in the granulosa cells. Mono-n-butyl phthalate (MnBP) alters the expression of cytokines, cell cycle-associated genes, ovarian stimulation, steroidogenesis, and progesterone production. Several in vitro studies have demonstrated that phthalate caused inflammation, invasion, change in cytokines, increased oxidative stress, viability, resistance to hydrogen peroxide, and proliferation of endometrial cells. CONCLUSION This might provide new insights about the impact of phthalate on the pathogenesis of endometriosis and its consequences on the ovarian function.
Collapse
Affiliation(s)
- Ya‐Ching Chou
- Department of Biological Science and TechnologyCollege of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDSB)National Chiao Tung UniversityHsinchuTaiwan
| | - Chii‐Ruey Tzeng
- Department of Obstetrics and GynecologyTaipei Medical UniversityTaipeiTaiwan
- Taipei Fertility Center, TaipeiTaiwan
| |
Collapse
|
6
|
Fan YH, Shen YL, Lin ZW, Zhou Y, Ye BC. Key role of exopolysaccharide on di-butyl phthalate adsorbing by Lactobacillus plantarum CGMCC18980. Appl Microbiol Biotechnol 2021; 105:2587-2595. [PMID: 33666738 PMCID: PMC7954756 DOI: 10.1007/s00253-021-11145-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 01/27/2023]
Abstract
Abstract Plasticizers belong to hormone-like substances existing widely in the environment. According to the Environmental Protection Agency of China, they are considered to be the fourth class of toxic chemicals due to their harmful effects on normal endocrine system in human bodies. In the recent published work of our lab, Lactobacillus plantarum CGMCC18980 (strain P1) could reduce the toxicity of di-butyl phthalate (DBP) in rats effectively. The purpose of this study is to further explore the adsorption mechanism of di-butyl phthalate to L. plantarum CGMCC18980, based on optimizing the adsorption conditions. As a consequence, the adsorption effect of L. plantarum CGMCC18980 attributed to relationships between exopolysaccharide, membrane protein, and the cell wall. Experimental results demonstrated that exopolysaccharide and the cell wall were devoted to DBP binding. An obvious adsorption layer was observed outside of L. plantarum CGMCC18980 through scanning electron microscope (SEM) and transmission electron microscope (TEM). The Fourier transform infrared spectroscopy (FTIR) results showed that the functional groups involved in adsorption were mainly C=O, C-N, and C-O, which related to lipids and polysaccharides. Zeta potential analysis indicated that DBP adsorption had no significant relationship with surface charge. These results revealed that exopolysaccharide may be the key factor of strain CGMCC18980 in DBP adsorption. Key points • Lactobacillus plantarum CGMCC18980 has the ability to adsorb di-butyl phthalate, reaching to 58.63%. • Exopolysaccharide is considered to play a key role in adsorption process. • Membrane protein, cell wall, and surface charge do not contribute to adsorption.
Collapse
Affiliation(s)
- Yu-Hang Fan
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China
| | - Yi-Lin Shen
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China
| | - Zhi-Wei Lin
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China
| | - Ying Zhou
- Department of Food Science and Technology, School of Bioengineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China.
| |
Collapse
|
7
|
Zeng Z, Lin X, Xia T, Liu W, Tian X, Li M. Identification of Crucial lncRNAs, miRNAs, mRNAs, and Potential Therapeutic Compounds for Polycystic Ovary Syndrome by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1817094. [PMID: 33224973 PMCID: PMC7666708 DOI: 10.1155/2020/1817094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was aimed at mining crucial long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) for the development of polycystic ovary syndrome (PCOS) based on the coexpression and the competitive endogenous RNA (ceRNA) theories and investigating the underlying therapeutic drugs that may function by reversing the expression of lncRNAs, miRNAs, and mRNAs. METHODS RNA (GSE106724, GSE114419, GSE137684, and GSE138518) or miRNA (GSE84376 and GSE138572) expression profile datasets of PCOS patients were downloaded from the Gene Expression Omnibus database. The weighted gene coexpression network analysis (WGCNA) using four RNA datasets was conducted to construct the lncRNA-mRNA coexpression networks, while the common differentially expressed miRNAs in two miRNA datasets and module RNAs were used to establish the ceRNA network. A protein-protein interaction (PPI) network was created to explore the potential interactions between genes. Gene Ontology and KEGG pathway enrichment analyses were performed to explore the functions of genes in networks. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) analyses were performed to identify potential therapeutic agents for PCOS. RESULTS Three modules (black, magenta, and yellow) were identified to be PCOS-related after WGCNA analysis, in which KLF3-AS1-PLCG2, MAPKAPK5-AS1-MAP3K14, and WWC2-AS2-TXNIP were important coexpression relationship pairs. WWC2-AS2-hsa-miR-382-PLCG2 was a crucial ceRNA loop in the ceRNA network. The PPI network showed that MAP3K14 and TXNIP could interact with hub genes PLK1 (degree = 21) and TLR1 (degree = 18), respectively. These genes were enriched into mitosis (PLK1), immune response (PLCG2 and TLR1), and cell cycle (TXNIP and PLK1) biological processes. Ten small molecule drugs (especially quercetin) were considered to be therapeutical for PCOS. CONCLUSION Our study may provide a novel insight into the mechanisms and therapy for PCOS.
Collapse
Affiliation(s)
- Zhi Zeng
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xia Lin
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenxiu Liu
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiaohui Tian
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Manchao Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| |
Collapse
|
8
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Downregulation of gap junctional intercellular communication and connexin 43 expression by bisphenol A in human granulosa cells. Biotechnol Appl Biochem 2020; 68:676-682. [PMID: 32610363 DOI: 10.1002/bab.1979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Gap junctional intercellular communication (GJIC) is the transfer of ions, metabolites, and second messengers between neighboring cells through intercellular junctions. Connexin 43 (Cx43) was found to be the type of gap junction protein responsible for human granulosa cells (GCs) and oocyte communication, which is required for folliculogenesis and oocyte maturation. Bisphenol A (BPA), an estrogenic-like endocrine-disrupting chemical, is one of the most widely produced chemicals around the world. There are reports that the chemical might cause endometrial tumorigenesis and several female reproductive disorders. This study demonstrated that cell culture medium, containing antioxidants (N-acetyl-l-cysteine and l-ascorbic acid-2-phosphate), was able to enhance the survival and self-renewal of GCs. In addition, we found that BPA at environmentally relevant concentration (10-7 M) reduced Cx43 expression and GJIC in GCs through estrogen receptor and mitogen-activated protein kinase pathways. The results of this study not only reveal the reproductive toxicity of BPA but also provide possible mechanisms by which BPA inhibited GJIC in GCs.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan.,Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
9
|
Exposure to Mono-n-Butyl Phthalate in Women with Endometriosis and Its Association with the Biological Effects on Human Granulosa Cells. Int J Mol Sci 2020; 21:ijms21051794. [PMID: 32151056 PMCID: PMC7084286 DOI: 10.3390/ijms21051794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
To study the association between urinary phthalate metabolite levels, endometriosis, and their effects on human granulosa cells, we recruited patients who underwent laparoscopy to confirm endometriosis (n = 123) and control patients (n = 78). Liquid chromatography–tandem mass spectrometry was used to measure the following five urinary phthalate metabolites: mono-n-butyl phthalate (MnBP), mono(2-ethylhexyl) phthalate, monobenzyl phthalate, mono(2-ethyl-5-oxo-hexyl) phthalate, and mono(2-ethyl-5-hydroxyhexyl) phthalate. Urinary MnBP levels were higher in patients with endometriosis than in controls after multivariable logistic regression including the number of deliveries, body mass index, and use of medicine as covariables. MnBP correlates with other phthalate metabolites. Previous studies found that endometriosis was a detrimental condition for granulosa cells. In our study, we observed whether MnBP affected granulosa cells. MnBP treatment altered the gene expression of BIRC5, BUB1B, CDC20, cyclin B1, IL-1β, TNF-α, inhibin-B, StAR, and P450ssc and attenuated the ratio of the mitochondrial membrane potential in human granulosa cells. Moreover, MnBP decreased the expression of the anti-Mullerian hormone. These findings suggest that MnBP concentration is associated with endometriosis and may affect the health and steroidogenesis of human granulosa cells.
Collapse
|
10
|
Rashtian J, Chavkin DE, Merhi Z. Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod Biol Endocrinol 2019; 17:5. [PMID: 30636624 PMCID: PMC6330570 DOI: 10.1186/s12958-018-0448-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
A mounting body of the literature suggests that environmental chemicals found in food and water could affect female reproduction. Many worldwide daily-used products have been shown to contain chemicals that could incur adverse reproductive outcomes in the perinatal/neonatal periods, childhood, adolescence, and even adulthood. The potential impact of Bisphenol A (BPA), Phthalates and Perfluoroalkyl substances (PFAS) on female reproduction, in particular on puberty, PCOS pathogenesis, infertility, ovarian function, endometriosis, and recurrent pregnancy loss, in both humans and animals, will be discussed in this report in order to provide greater clinician and public awareness about the potential consequences of these chemicals. The effects of these substances could interfere with hormone biosynthesis/action and could potentially be transmitted to further generations. Thus proper education about these chemicals can help individuals decide to limit exposure, ultimately alleviating the risk on future generations.
Collapse
Affiliation(s)
- Justin Rashtian
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10463, USA.
- Department of Obstetrics and Gynecology, New York University School of Medicine, 180 Varick Street, Sixth Floor, New York, NY, 10014, USA.
| |
Collapse
|
11
|
Craig ZR, Ziv-Gal A. Pretty Good or Pretty Bad? The Ovary and Chemicals in Personal Care Products. Toxicol Sci 2017; 162:349-360. [DOI: 10.1093/toxsci/kfx285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Zelieann R Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Ayelet Ziv-Gal
- College of Health/School of Health Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|