1
|
Chellman GJ, Keesler RI, York KA. Immunogenicity-related placental infarcts and abortions in nonhuman primate developmental and reproductive toxicity studies: Proposed mechanism and impact on study interpretation. Reprod Toxicol 2025; 135:108927. [PMID: 40252711 DOI: 10.1016/j.reprotox.2025.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/05/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Previous analysis of 3 developmental toxicity studies (1 EFD, 2 ePPND) conducted in cynomolgus monkeys for biotherapeutics indicated an association between immunogenicity and abortions. This led to the hypothesis that immunogenic responses to biotherapeutics administered to pregnant nonhuman primates (NHPs) can cause altered placental hemodynamics and/or vascular pathology, resulting in placental infarcts and abortion secondary to compromised uteroplacental perfusion. Retrospective analysis of an additional 17 NHP developmental and reproductive toxicity (DART) studies was conducted for further support of this hypothesis. Of 366 placentas evaluated from the 20 total studies (2 EFD, 18 ePPND), 18 % (n = 66) had central placental infarctions/hematomas associated with maternal immunogenicity; these were significant enough to lead to abortion in 32/66 (48 %) of these pregnancies. Abortions in anti-drug antibody positive females with placental infarction were found in 40 % (n = 8) of the studies but accounted for only a 5 % fetal loss rate. Thus, although immunogenicity was commonly observed in these studies, its impact to study outcome/interpretation was manageable in most cases. In the event of immune-mediated responses such as formation of anti-drug antibodies and/or abnormal placental morphology (e.g., infarcts), it is imperative to take a carefully considered, weight-of-evidence approach to interpretation of direct (test article related) vs. indirect (secondary to immunogenicity) effects. In cases where the biotherapeutic being tested is expected to be highly immunogenic in an NHP DART study, with potential confounding impact to study interpretation, alternatives to NHPs should be given high priority in the strategic approach to developmental toxicity testing.
Collapse
Affiliation(s)
- Gary J Chellman
- Charles River Laboratories - Safety Assessment, 6995 Longley Lane, Reno, NV 89511, United States
| | - Rebekah I Keesler
- Charles River Laboratories - Safety Assessment, 6995 Longley Lane, Reno, NV 89511, United States
| | - Kristina A York
- Charles River Laboratories - Safety Assessment, 6995 Longley Lane, Reno, NV 89511, United States
| |
Collapse
|
2
|
Tamimi A, Tamimi A, Sorkheh F, Asl SM, Ghafari A, Karimi AG, Erabi G, Pourmontaseri H, Deravi N. Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Rep (Hoboken) 2023; 6:e1802. [PMID: 37042307 PMCID: PMC10172176 DOI: 10.1002/cnr2.1802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) is a relatively common and heterogenous malignancy of different organs, such as the skin, esophagus, and lungs. Although most cases experience good survival with surgical methods, management of advanced types of the disease remains challenging. Several modalities, including different chemotherapy regimens and immunotherapies, have been investigated in this matter, among which Monoclonal antibodies (Mabs) are one of the most promising ones. Since the development of Mabs, they have been widely used to treat different diseases. Mabs have shown significant efficacy with high specificity along with acceptable safety, which makes them a favorable option in cancer therapy. In this article, we aimed to review the different aspects of using Mabs in SCC therapy. RECENT FINDINGS We found that treating with different Mabs has shown excellent efficacy accompanied by acceptable safety in treating SCC of different organs. Therefore, Mabs are considered great options in the treatment of SCC, especially in advanced cases. Overall, two highly potent types of Mabs in SCC therapy are anti-EGFR Mabs and checkpoint inhibitors, especially Cetuximab, Nimotuzumab, and PD-1 inhibitors. Bevacizumab is also a promising option as adjuvant therapy to other modalities. CONCLUSION Although some Mabs have shown promising outcomes in SCC therapy, their application as a part of cancer treatment depends on further investigations regarding cost-effectiveness and predictors of response. FDA has approved several Mabs in SCC therapies, and Mabs may have a crucial role in this era in the near future, especially in treating head and neck and esophageal SCC and metastatic lung cancer.
Collapse
Affiliation(s)
- Amirhossein Tamimi
- Student Research Committee, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Atena Tamimi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Sorkheh
- Student Research CommitteeBabol University of Medical SciencesBabolIran
| | - Saba Mardekatani Asl
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arezoo Ghafari
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Hossein Pourmontaseri
- Student Research CommitteeFasa University of Medical SciencesFasaIran
- Bitab knowledge EnterpriseFasa University of Medical SciencesFasaIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Meng W, Chen T. Association between the HGF/c‑MET signaling pathway and tumorigenesis, progression and prognosis of hepatocellular carcinoma (Review). Oncol Rep 2021; 46:191. [PMID: 34278495 DOI: 10.3892/or.2021.8142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and lethal malignancies with a rising incidence, and is characterized by rapid progression, frequent metastasis, late diagnosis, high postoperative recurrence and poor prognosis. Therefore, novel treatment strategies for HCC, particularly advanced HCC, are urgently required. The hepatocyte growth factor (HGF)/c‑mesenchymal‑epithelial transition receptor (c‑MET) axis is a key signaling pathway in HCC and is strongly associated with its highly malignant features. Available treatments based on HGF/c‑MET inhibition may prolong the lifespan of patients with HCC; however, they do not achieve the desired therapeutic effects. The aim of the present article was to review the basic knowledge regarding the role of the HGF/c‑MET signaling pathway in HCC, and examine the association between the HGF/c‑MET signaling pathway and the tumorigenesis, progression and prognosis of HCC.
Collapse
Affiliation(s)
- Wei Meng
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Tao Chen
- School of Medicine, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
4
|
Payton A, Clark J, Eaves L, Santos HP, Smeester L, Bangma JT, O'Shea TM, Fry RC, Rager JE. Placental genomic and epigenomic signatures associated with infant birth weight highlight mechanisms involved in collagen and growth factor signaling. Reprod Toxicol 2020; 96:221-230. [PMID: 32721520 DOI: 10.1016/j.reprotox.2020.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
Birth weight (BW) represents an important clinical and toxicological measure, indicative of the overall health of the newborn as well as potential risk for later-in-life outcomes. BW can be influenced by endogenous and exogenous factors and is known to be heavily impacted in utero by the health and function of the placenta. An aspect that remains understudied is the influence of genomic and epigenomic programming within the placenta on infant BW. To address this gap, we set out to test the hypothesis that genes involved in critical placental cell signaling are associated with infant BW, and are likely regulated, in part, through epigenetic mechanisms based on microRNA (miRNA) mediation. This study leveraged a robust dataset based on 390 infants born at low gestational age (ranged 23-27 weeks) to evaluate genome-wide expression profiles of both mRNAs and miRNAs in placenta tissues and relate these to infant BW. A total of 254 mRNAs and 268 miRNAs were identified as associated with BW, the majority of which showed consistent associations across placentas derived from both males and females. BW-associated mRNAs were found to be enriched for important biological pathways, including glycoprotein VI (the major receptor for collagen), human growth, and hepatocyte growth factor signaling, a portion of which were predicted to be regulated by BW-associated miRNAs. These miRNA-regulated pathways highlight key mechanisms potentially linking endogenous/exogenous factors to changes in birth outcomes that may be deleterious to infant and later-in-life health.
Collapse
Affiliation(s)
- Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Catlin NR, Mitchell AZ, Potchoiba MJ, O'Hara DM, Wang M, Zhang M, Weinbauer GF, Bowman CJ. Placental transfer of 125 iodinated humanized immunoglobulin G2Δa in the cynomolgus monkey. Birth Defects Res 2019; 112:105-117. [PMID: 31746560 DOI: 10.1002/bdr2.1615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022]
Abstract
Antibody-like biopharmaceuticals cross the placenta by utilizing existing transport pathways (e.g., FcRn receptor). There are limited data evaluating this transfer during organogenesis in any species. Understanding placental transfer of antibody-like biopharmaceuticals can help to predict risk of developmental toxicity across species, including humans. To complement previously published placental transfer data in the rat with humanized IgGΔ2 (hIgG2), the timing and magnitude of transfer in the cynomolgus monkey and embryo/fetal biodistribution of maternally administered 125 I-radiolabeled hIgG2 was quantified on gestation days (GD) 35, 40, 50, 70, and 140 using gamma counting and whole body autoradiography 24 hr following intravenous injection. Chorioallantoic placental tissues were collected at all time points for Western Blot analysis with anti-FcRn antibody. Maternally administered 125 I-hIgG2 was found in embryo/fetal tissues at all time points, including organogenesis. Embryo/fetal plasma 125 I-hIgG2 concentration increased during gestation, but only slightly up to GD 70 in embryo/fetal tissues, with hIgG2 tissue concentrations generally similar between GD70 and 140. The embryo/fetal:maternal 125 I-hIgG2 plasma concentration ratio was approximately 2.3 fold higher on GD 140, in comparison to ratios on GD 40. Importantly, placental FcRn protein expression was confirmed at all timepoints. These data demonstrate placental transfer of hIgG2 in a nonhuman primate model, and at levels comparable to the rat model, raising the potential for adverse developmental outcomes by direct antibody binding to biological targets.
Collapse
|
6
|
Rocca M, Morford LL, Blanset DL, Halpern WG, Cavagnaro J, Bowman CJ. Applying a weight of evidence approach to the evaluation of developmental toxicity of biopharmaceuticals. Regul Toxicol Pharmacol 2018; 98:69-79. [PMID: 30009863 DOI: 10.1016/j.yrtph.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/17/2023]
Abstract
Toxicity studies in pregnant animals are not always necessary for assessing the human risk of developmental toxicity of biopharmaceuticals. The growing experience and information on target biology and molecule-specific pharmacokinetics present a powerful approach to accurately anticipate effects of target engagement by biopharmaceuticals using a weight of evidence approach. The weight of evidence assessment should include all available data including target biology, pharmacokinetics, class effects, genetically modified animals, human mutations, and a thorough literature review. When assimilated, this weight of evidence evaluation may be sufficient to inform risk for specific clinical indications and patient populations. While under current guidance this approach is only applicable for drugs and biologics for oncology, the authors would like to suggest that this approach may also be appropriate for other disease indications. When there is an unacceptable level of uncertainty and a toxicity study in pregnant animals could impact human risk assessment, then such studies should be considered. Determination of appropriate nonclinical species for developmental toxicity studies to inform human risk should consider species-specific limitations, reproductive physiology, and pharmacology of the biopharmaceutical. This paper will provide considerations and examples of the weight of evidence approach to evaluating the human risk of developmental toxicity of biopharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Wendy G Halpern
- Genentech, A Member of the Roche Group, South San Francisco, CA, United States.
| | | | | |
Collapse
|