1
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. CD44 expression in renal tubular epithelial cells in the kidneys of rats with cyclosporine-induced chronic kidney disease. J Toxicol Pathol 2024; 37:55-67. [PMID: 38584969 PMCID: PMC10995437 DOI: 10.1293/tox.2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024] Open
Abstract
Renal tubular epithelial cell (TEC) injury is the most common cause of drug-induced kidney injury (DIKI). Although TEC regeneration facilitates renal function and structural recovery following DIKI, maladaptive repair of TECs leads to irreversible fibrosis, resulting in chronic kidney disease (CKD). CD44 is specifically expressed in TECs during maladaptive repair in several types of rat CKD models. In this study, we investigated CD44 expression and its role in renal fibrogenesis in a cyclosporine (CyA) rat model of CKD. Seven-week-old male Sprague-Dawley rats fed a low-salt diet were subcutaneously administered CyA (0, 15, or 30 mg/kg) for 28 days. CD44 was expressed in atrophic, dilated, and hypertrophic TECs in the fibrotic lesions of the CyA groups. These TECs were collected by laser microdissection and evaluated by microarray analysis. Gene ontology analysis suggested that these TECs have a mesenchymal phenotype, and pathway analysis identified CD44 as an upstream regulator of fibrosis-related genes, including fibronectin 1 (Fn1). Immunohistochemistry revealed that epithelial and mesenchymal markers of TECs of fibrotic lesions were downregulated and upregulated, respectively, and that these TECs were surrounded by a thickened basement membrane. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of TECs of fibrotic lesions, whereas fibronectin protein was localized in the stroma surrounding these tubules. Enzyme-linked immunosorbent assay revealed increased serum CD44 levels in CyA-treated rats. Collectively, these findings suggest that CD44 contributes to renal fibrosis by inducing fibronectin secretion in TECs exhibiting partial epithelial-mesenchymal transition and highlight the potential of CD44 as a biomarker of renal fibrosis.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| |
Collapse
|
2
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol 2024; 44:455-469. [PMID: 37876353 DOI: 10.1002/jat.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Hiramatsu S, Ichii O, Namba T, Otani Y, Nakamura T, Masum MA, Elewa YHA, Kon Y. Altered Renal Pathology in an Autoimmune Disease Mouse Model After Induction of Diabetes Mellitus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:897-909. [PMID: 34044904 DOI: 10.1017/s143192762100057x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diabetes mellitus (DM) is a predisposing factor for renal disorder progression and is referred to as diabetic kidney disease (DKD). However, there are no reports of DKD with an underlying autoimmune disorder. In this study, we compared the pathophysiological changes caused by DM induction after streptozotocin (STZ) injection in comparison with that in a control group receiving citrate buffer (CB) in the autoimmune disease model mice “BXSB/MpJ-Yaa” (Yaa) and the wild-type strain BXSB/MpJ. Both strains showed hyperglycemia after 12 weeks of STZ injection. Interestingly, the Yaa group developed membranous and proliferative glomerulonephritis, which tended to be milder glomerular lesions in the STZ group than in the CB group, as indicated by a decreased mesangial area and ameliorated albuminuria. Statistically, the indices for hyperglycemia and autoimmune abnormalities were negatively and positively correlated with the histopathological parameters for mesangial matrix production and glomerular proliferative lesions, respectively. STZ treatment induced renal tubular anisonucleosis and dilations in both strains, and they were more severe in Yaa. Significantly decreased cellular infiltration was observed in the Yaa group compared to the CB group. Thus, in DKD related to autoimmune nephritis, hyperglycemia modifies its pathology by decreasing the mesangial area and interstitial inflammation and aggravating renal tubular injury.
Collapse
Affiliation(s)
- Shiori Hiramatsu
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Kita 18-Nishi 9, Kita-ku, Sapporo060-0818, Japan
| |
Collapse
|
4
|
In vivo mutagenicity and tumor-promoting activity of 1,3-dichloro-2-propanol in the liver and kidneys of gpt delta rats. Arch Toxicol 2021; 95:3117-3131. [PMID: 34269859 DOI: 10.1007/s00204-021-03120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), a food contaminant, exerts carcinogenic effects in multiple organs, including the liver and kidneys, in rats. However, the underlying mechanisms of 1,3-DCP-induced carcinogenesis remain unclear. Here, the in vivo mutagenicity and tumor-promoting activity of 1,3-DCP in the liver and kidneys were evaluated using medium-term gpt delta rat models previously established in our laboratory (GPG and GNP models). Six-week-old male F344 gpt delta rats were treated with 0 or 50 mg/kg body weight/day 1,3-DCP by gavage for 4 weeks. After 2 weeks of cessation, partial hepatectomy or unilateral nephrectomy was performed to collect samples for in vivo mutation assays, followed by single administration of diethylnitrosamine (DEN) for tumor initiation. One week after DEN injection, 1,3-DCP treatment was resumed, and tumor-promoting activity was evaluated in the residual liver or kidneys by histopathological analysis of preneoplastic lesions. gpt mutant frequencies increased in excised liver and kidney tissues following 1,3-DCP treatment. 1,3-DCP did not affect the development of glutathione S-transferase placental form-positive foci in residual liver tissues, but enhanced atypical tubule hyperplasia in residual kidney tissues. Detailed histopathological analyses revealed glomerular injury and increased cell proliferation of renal tubular cells in residual kidney tissues of rats treated with 1,3-DCP. These results suggested possible involvement of genotoxic mechanisms in 1,3-DCP-induced carcinogenesis in the liver and kidneys. In addition, we found that 1,3-DCP exhibited limited tumor-promoting activity in the liver, but enhanced clonal expansion in renal carcinogenesis via proliferation of renal tubular cells following glomerular injury.
Collapse
|
5
|
Matsushita K, Toyoda T, Yamada T, Morikawa T, Ogawa K. Specific expression of survivin, SOX9, and CD44 in renal tubules in adaptive and maladaptive repair processes after acute kidney injury in rats. J Appl Toxicol 2020; 41:607-617. [PMID: 32969066 DOI: 10.1002/jat.4069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) is thought to be a reversible condition; however, growing evidence has suggested that AKI may be associated with subsequent development of chronic kidney disease. Although renal tubules have intrinsic regeneration capacity, disruption of the regeneration mechanisms leads to irreversible interstitial fibrosis. In this study, we investigated immunohistochemical markers of renal tubules in adaptive and maladaptive repair processes to predict AKI reversibility. Histopathological analysis demonstrated that regenerative tubules and dilated tubules were observed in the kidneys of AKI model rats after ischemia/reperfusion (I/R). Regenerative tubules gradually redifferentiated after I/R, whereas dilated tubules exhibited no tendency for redifferentiation. In fibrotic areas of the kidney in renal fibrosis model rats subjected to I/R, renal tubules were dilated or atrophied. There results suggested that the histopathological features of renal tubules in the maladaptive repair were dilation or atrophy. From microarray data of regenerative tubules, survivin, SOX9, and CD44 were extracted as candidate markers. Immunohistochemical analysis demonstrated that survivin and SOX9 were expressed in regenerative tubules, whereas SOX9 was also detected in renal tubules in fibrotic areas. These findings indicated that survivin and SOX9 contributed to renal tubular regeneration, whereas sustained SOX9 expression may be associated to fibrosis. CD44 was expressed in dilated tubules in the kidneys of AKI model rats and in the tubules of fibrotic areas of renal fibrosis model rats, suggesting that CD44 was expressed in renal tubules in maladaptive repair. Thus, these factors could be useful markers for detecting disruption of the regenerative mechanisms of renal tubules.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Matsushita K, Toyoda T, Yamada T, Morikawa T, Ogawa K. Comprehensive expression analysis of mRNA and microRNA for the investigation of compensatory mechanisms in the rat kidney after unilateral nephrectomy. J Appl Toxicol 2020; 40:1373-1383. [PMID: 32369870 DOI: 10.1002/jat.3990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Compensation is a physiological response that occurs during chemical exposure to maintain homeostasis. Because compensatory responses are not usually considered adverse effects, it is important to understand compensatory mechanisms for chemical risk assessment. Although the kidney is a major target organ for toxicity, there is controversy over whether hyperplasia or hypertrophy contributes to the compensatory mechanism, and there is limited information to apply for chemical risk assessment. In the present study, compensatory mechanisms of the kidney were investigated in a unilateral nephrectomy (UNx) model using adult male and female F344 rats. In residual kidneys of male and female rats after UNx, 5-bromo-2'-deoxyuridine-labeling indices and mRNA expression of cell cycle-related genes were increased, although there were no fluctuations in mRNA expression of transforming growth factor-β1, which contributes to hypertrophy in renal tubules. Pathway analysis using mRNA expression data from a complementary DNA (cDNA) microarray revealed that canonical pathways related to cell proliferation were mainly activated and that forkhead box M1 (FOXM1) was an upstream regulator of compensatory cell proliferation in residual kidneys of male and female rats. cDNA microarray for microRNAs (miRNAs) demonstrated that nine miRNAs were downregulated in residual kidneys, and mRNA/miRNA integrated analysis indicated that miRNAs were associated with the expression of factors downstream of FOXM1. Overall, these results suggested that FOXM1-mediated hyperplasia rather than hypertrophy contributed to compensatory mechanisms in the kidney and that miRNAs regulated downstream FOXM1 signaling. These results will be beneficial for evaluating nephrotoxicity in chemical risk assessment and for developing new biomarkers to predict nephrotoxicity.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|